1) Find AB by using the Law of Sines:
AB / sin(C) = AC / sin(B)
AB / sin(40) = 13 / sin(49)
AB = 13 / sin(49) · sin(40)
AB = 11.072
2) Find BC by using the Law of Sines:
A = 180 - B - C = 180 - 49 - 40 = 91
BC / sin(A) = AC / sin(B)
BC / sin(91) = 13 / sin(49)
BC = 13 / sin(49) · sin(91)
BC = ...
Finish by adding the three sides together.
1) Find AB by using the Law of Sines:
AB / sin(C) = AC / sin(B)
AB / sin(40) = 13 / sin(49)
AB = 13 / sin(49) · sin(40)
AB = 11.072
2) Find BC by using the Law of Sines:
A = 180 - B - C = 180 - 49 - 40 = 91
BC / sin(A) = AC / sin(B)
BC / sin(91) = 13 / sin(49)
BC = 13 / sin(49) · sin(91)
BC = ...
Finish by adding the three sides together.