+0  
 
+2
249
2
avatar+248 

What is the product of the real parts of the roots of z^2 - z = 5 - 5i?

 Jul 3, 2022
 #1
avatar
+2

We write the quadratic as z^2 - z - 5 + 5i = 0.  Then by Vieta's formulas, the product of the real parts is -5.

 Jul 3, 2022
 #2
avatar+1164 
+10

z^2 - z = 5 + 5i
z^2 - z + 1/4 = 5 + 5i + 1/4
(z - 1/2)^2 = 21/4 + 5i
z - 1/2 = ±√(21/4 + 5i)
z = 1/2 ± (5/2 + i)

z1 = 1/2 + 5/2 + i = 3 + i
z2 = 1/2 - 5/2 - i = - 2 - i

Product of roots :
(3 + i)(- 2 - i) = - 5 - 5i

The real part of the product of the roots is - 5

 Jul 4, 2022

0 Online Users