+0  
 
+1
71
2
avatar

What is the radius of the circle inscribed in triangle ABC if AB=22, AC=12, and BC=14? Express your answer in simplest radical form.

Guest Aug 12, 2018
 #1
avatar+7447 
+3

What is the radius of the circle inscribed in triangle ABC if AB=22, AC=12, and BC=14?

 

triangle ABC

\(a=14\\ b=12\\ c=22\\ r=?\)

 

\(s=\frac{a+b+c}{2}=\frac{14+12+22}{2}\\ s=24\\ A_{\triangle}=\sqrt{s(s-a)(s-b)(s-c)}\\ A_{\triangle}=\sqrt{24(24-14)(24-12)(24-22)}\)

\(A_{\triangle}=\sqrt{2^3*3*2*5*2^2*3*2}=\sqrt{2^7*3^2*5}\\ \color{blue}A_{\triangle}=24\cdot \sqrt{10}\)

 

\(A_{\triangle}=\frac{r(a+b+c)}{2}\\ r=\frac{2A_{\triangle}}{a+b+c}=\frac{48\cdot\sqrt{10}}{48}\)

\(r=\sqrt{10}\approx 3.1627766..\)

Thanks Mathhemathh

 

\(The\ radius\ of\ the\ circle\\ inscribed\ in\ triangle\ ABC\ is =\sqrt{10}\approx 3.1627766..\)

 

laugh  !

asinus  Aug 12, 2018
edited by asinus  Aug 12, 2018
edited by asinus  Aug 12, 2018
edited by asinus  Aug 12, 2018
 #2
avatar+599 
+3

Yes, this is an application of Heron's Formula!

mathtoo  Aug 12, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.