+0  
 
0
37
1
avatar+193 

What is the ratio of the volume of cone $A$ to the volume of cone $B$? Express your answer as a common fraction.

IMAGE

https://latex.artofproblemsolving.com/d/6/2/d62f494a22d0726aa38320488b044e6b2b2ea8f9.png

RektTheNoob  Dec 6, 2017

Best Answer 

 #1
avatar+5576 
+2

 

volume of cone  A  =  \(\frac13\cdot\pi\cdot14.8^2\cdot28.3\)

 

volume of cone  B  =  \(\frac13\cdot\pi\cdot28.3^2\cdot14.8\)

 

\(\frac{\text{volume of cone A}}{\text{volume of cone B}}\,=\,\frac{\frac13\cdot\pi\cdot14.8^2\cdot28.3}{\frac13\cdot\pi\cdot28.3^2\cdot14.8}\,=\,\frac{14.8^2\cdot28.3}{28.3^2\cdot14.8}\,=\,\frac{14.8}{28.3}\,=\,\frac{148}{283}\)

hectictar  Dec 6, 2017
Sort: 

1+0 Answers

 #1
avatar+5576 
+2
Best Answer

 

volume of cone  A  =  \(\frac13\cdot\pi\cdot14.8^2\cdot28.3\)

 

volume of cone  B  =  \(\frac13\cdot\pi\cdot28.3^2\cdot14.8\)

 

\(\frac{\text{volume of cone A}}{\text{volume of cone B}}\,=\,\frac{\frac13\cdot\pi\cdot14.8^2\cdot28.3}{\frac13\cdot\pi\cdot28.3^2\cdot14.8}\,=\,\frac{14.8^2\cdot28.3}{28.3^2\cdot14.8}\,=\,\frac{14.8}{28.3}\,=\,\frac{148}{283}\)

hectictar  Dec 6, 2017

4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details