+0  
 
0
253
1
avatar+376 

What is the ratio of the volume of cone $A$ to the volume of cone $B$? Express your answer as a common fraction.

IMAGE

https://latex.artofproblemsolving.com/d/6/2/d62f494a22d0726aa38320488b044e6b2b2ea8f9.png

RektTheNoob  Dec 6, 2017

Best Answer 

 #1
avatar+7096 
+2

 

volume of cone  A  =  \(\frac13\cdot\pi\cdot14.8^2\cdot28.3\)

 

volume of cone  B  =  \(\frac13\cdot\pi\cdot28.3^2\cdot14.8\)

 

\(\frac{\text{volume of cone A}}{\text{volume of cone B}}\,=\,\frac{\frac13\cdot\pi\cdot14.8^2\cdot28.3}{\frac13\cdot\pi\cdot28.3^2\cdot14.8}\,=\,\frac{14.8^2\cdot28.3}{28.3^2\cdot14.8}\,=\,\frac{14.8}{28.3}\,=\,\frac{148}{283}\)

hectictar  Dec 6, 2017
 #1
avatar+7096 
+2
Best Answer

 

volume of cone  A  =  \(\frac13\cdot\pi\cdot14.8^2\cdot28.3\)

 

volume of cone  B  =  \(\frac13\cdot\pi\cdot28.3^2\cdot14.8\)

 

\(\frac{\text{volume of cone A}}{\text{volume of cone B}}\,=\,\frac{\frac13\cdot\pi\cdot14.8^2\cdot28.3}{\frac13\cdot\pi\cdot28.3^2\cdot14.8}\,=\,\frac{14.8^2\cdot28.3}{28.3^2\cdot14.8}\,=\,\frac{14.8}{28.3}\,=\,\frac{148}{283}\)

hectictar  Dec 6, 2017

21 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.