What is the remainder when \(2001 \cdot 2002 \cdot 2003 \cdot 2004 \cdot 2005\) is divided by 19?
What is the remainder when
\(2001 \cdot 2002 \cdot 2003 \cdot 2004 \cdot 2005\)
is divided by 19?
\(\begin{array}{|rclcl|} \hline && 2001 \cdot 2002 \cdot 2003 \cdot 2004 \cdot 2005 \pmod{19} \\ &&&& 2001 \pmod{19} \\ &&&\equiv& {\color{red}6} \pmod{19} \\\\ &&&& 2002 \pmod{19} \\ &&&\equiv& {\color{red}7} \pmod{19} \\\\ &&&& 2003 \pmod{19} \\ &&&\equiv& {\color{red}8} \pmod{19} \\\\ &&&& 2004 \pmod{19} \\ &&&\equiv& {\color{red}9} \pmod{19} \\\\ &&&& 2005 \pmod{19} \\ &&&\equiv& {\color{red}10} \pmod{19} \\\\ &\equiv& 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \pmod{19} \\ &\equiv& 30240 \pmod{19} \\ &\equiv& {\color{red}11} \pmod{19} \\ \hline \end{array}\)
The remainder is 11