We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
82
1
avatar

What is the remainder when (x+1)^2010 is divided by x^2+x+1?

 Mar 27, 2019
 #1
avatar+22315 
+3

What is the remainder when \((x+1)^{2010}\) is divided by \(x^2+x+1\)?

 

I assume

 

Look at the low powers of x.

Eventually they will cycle.

 

\(\begin{array}{|r|c|c|} \hline n & & \text{remainder} \\ \hline 0 & \dfrac{(x+1)^0}{x^2+x+1} & \color{red}1 \\ \hline 1 & \dfrac{(x+1)^1}{x^2+x+1} & x+1 \\ \hline 2 & \dfrac{(x+1)^2}{x^2+x+1} & x \\ \hline 3 & \dfrac{(x+1)^3}{x^2+x+1} & -1 \\ \hline 4 & \dfrac{(x+1)^4}{x^2+x+1} & -x-1 \\ \hline 5 & \dfrac{(x+1)^5}{x^2+x+1} & -x \\ \hline 6 & \dfrac{(x+1)^6}{x^2+x+1} & \color{red}1 \\ \hline 7 & \dfrac{(x+1)^7}{x^2+x+1} & x+1 \\ \hline 8 & \dfrac{(x+1)^8}{x^2+x+1} & x \\ \hline \ldots &\ldots & \ldots \\ \hline 2010 & \dfrac{(x+1)^{2010}}{x^2+x+1} & \color{red}1 \\ \hline \end{array}\)

 

\((x+1)^n / (x^2+x+1) \) is cyclic of order 6
So we get \((x+1)^n \equiv (x+1)^{n\pmod{6}}\pmod{x^2+x+1}\)

\((x+1)^{2010} \equiv (x+1)^{6·335+0} \equiv(x+1)^{0} \equiv 1 \pmod{x^2+x+1}\)

 

The remainder when \((x+1)^{2010}\) is divided by \(x^2+x+1\) is 1

 

laugh

 Mar 28, 2019

3 Online Users

avatar