We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
2014
4
avatar+1016 

The smaller triangle is a pre-image of the bigger triangle. The center of dilation is (2, −1).

What is the scale factor used to create the dilation?

 Nov 6, 2017
 #2
avatar+10413 
+2

I think it's -2

 Nov 7, 2017
 #3
avatar+22572 
+2

What is the scale factor used to create the dilation?
The smaller triangle is a pre-image of the bigger triangle. The center of dilation is (2, -1).
What is the scale factor used to create the dilation?

 

Let \(\vec{A} = \binom{-1}{-1} \) before dilation
Let \(\vec{A'} = \binom{8}{-1}\) after dilation
Let \(\vec{C} = \binom{2}{-1}\) the center of dilation
Let \(\lambda \) is the scale factor used to create the dilation

 

Formula for dilation with vector A:
 \(\lambda = -2\)

\(\begin{array}{|rcll|} \hline \vec{A'} &=& (\vec{A}-\vec{C})\cdot \lambda + \vec{C} \quad & | \quad \lambda = -2 \\ \binom{8}{-1} &\overset{?}{=}& \Big(\binom{-1}{-1}-\binom{2}{-1} \Big)\cdot (-2) + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-1-2}{-1-(-1)} \cdot (-2) + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3}{0} \cdot (-2) + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3\cdot (-2)}{0\cdot (-2)} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{6}{0} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{6+2}{0-1} \\ &\overset{!}{=}& \binom{8}{-1}~ \checkmark \\ \hline \end{array}\)

 

\( \lambda = 2\)
\(\begin{array}{|rcll|} \hline \vec{A'} &=& (\vec{A}-\vec{C})\cdot \lambda + \vec{C} \quad & | \quad \lambda = 2 \\ \binom{8}{-1} &\overset{?}{=}& \Big(\binom{-1}{-1}-\binom{2}{-1} \Big)\cdot 2 + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-1-2}{-1-(-1)} \cdot 2 + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3}{0} \cdot 2 + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3\cdot 2}{0\cdot 2} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-6}{0} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-6+2}{0-1} \\ & \ne & \binom{-4}{-1} \\ \hline \end{array}\)

 

 

laugh

 Nov 7, 2017
edited by heureka  Nov 7, 2017
 #4
avatar+101872 
+1

Thanks, Omi and heureka.........I was unsure about this one  !!!

 

 

cool cool cool

 Nov 7, 2017
edited by CPhill  Nov 7, 2017

6 Online Users

avatar