Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1772
1
avatar

What is the shortest distance from the origin to the circle defined by x224x+y2+10y+160=0?

The equation can also be written as (x12)2 + (y+5)2=9, so we know that the radius of the circle is 3, and the origin is at (12,-5).

 Sep 23, 2018
 #1
avatar+6251 
0

I think the easiest way to do this is to parameterize the circle via a single variable and solve the minimization problem.

 

let p be a point on the circle given by (x12)2+(y+5)2=9then p can be described as p=(3cos(θ)+12, 3sin(θ)5)

 

The squared distance of this point to the origin is d2=(3cos(θ)+12)2+(3sin(θ)5)2=9sin2(θ)30sin(θ)+9cos2(θ)+72cos(θ)+169=30sin(θ)+72cos(θ)+178=78cos(θ+arctan(5/12))+178

 

d2will clearly be minimized when θ+arctan(5/12)=πθ=πarctan(5/12)at this angle d2=78+178=100d=10

 Sep 23, 2018

2 Online Users