We need to solve this equation for n and then add 1 to the answer to findthe number of terms
501 + 2n =699
2n = 699 - 501
2n = 198
n = 99
Number of terms = 99 + 1 =100
Sum = [ first term + last term ] [ number of terms / 2 ]
[ 501 + 699 ] [ 100/2] =
1200 * 50 =
60000
\(501+503+\dots+697+699\\~\\ =\quad (501+2\cdot0) + (501+2\cdot1) +\dots+(501+2\cdot98) +(501+2\cdot99) \\~\\ =\quad (499+2\cdot1) + (499+2\cdot2) +\dots+(499+2\cdot99) +(499+2\cdot100) \\~\\ =\quad \sum\limits_{n=1}^{100}(499+2n) \\~\\ =\quad \sum\limits_{n=1}^{100}499+ \sum\limits_{n=1}^{100}2n \\~\\ =\quad 100\cdot499+ 2\cdot\sum\limits_{n=1}^{100}n \\~\\ =\quad 49900+ 2\cdot\frac{100(100+1)}{2} \\~\\ =\quad 49900+ 10100\\~\\ =\quad60000\).
.