We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Let a and b real numbers such that x4+2x3-x2+ax+b = (Q(x))2 for some polynomial Q(x). What is the value of a + b?

thess Oct 16, 2018

#1**+2 **

\(p(x)=x^4+2x^3-x^2+ax+b = (q(x))^2,~\text{for some polynomial }q(x)\)

\(\text{we know q(x) will be of order 2 so write it as }\\ q(x)=q_2 x^2 + q_1 x + q_0 \\ (q(x))^2 = q_2^2 x^4+2 q_1 q_2 x^3+\left(q_1^2+2 q_0 q_2\right) x^2+2 q_0 q_1 x+q_0^2 \)

\(\text{and we have equations }\\ q_2^2 = 1\\ 2q_1q_2 = 2\\ (q_1^2+2q_0q_2)=-1\\ 2q_0q_1=a\\ q_0^2=b\)

\(\text{clearly }q_2 = \pm 1\\ \text{suppose }q_2=1 \\ 2q_1 (1)=2,~q_1=1\\ (1+2q_0(1))=-1 \\ q_0=-1 \\ b=q_0^2 = 1 \\ a=2q_0 = 2\)

\(\text{now suppose }q_2=-1 \\ 2q_1(-1) = 2,~q_1=-1 \\ (1+2q_0(-1))=-1,~q_0=1 \\ b=q_0^2 = 1 \\ a = 2(-1)(-1) = 2\)

\(\text{so in both cases }a=2,~b=1 \\ \text{and }a+b = 3\)

I kind of suspect there is a simpler way to solve this.

.Rom Oct 17, 2018