+0  
 
0
82
1
avatar+542 

What is the value of cos(−θ)?

SamJones  Mar 4, 2018

Best Answer 

 #1
avatar+7048 
+4

By the Pythagorean identity...

 

sin2(-θ) + cos2(-θ)   =   1

                                             Plug in  (-3/5)  for  sin(-θ)

(-3/5)2 + cos2(-θ)   =   1

 

9/25   +  cos2(-θ)   =   1

                                             Subtract  9/25  from both sides of the equation.

cos2(-θ)   =   1  -  9/25

 

cos2(-θ)   =   16/25

                                             Take the  ±  square root of both sides.

cos(-θ)   =   ±√[ 16/25 ]

 

cos(-θ)   =   ± 4 / 5

 

Since  sin(-θ)  is negative,  -θ  must lie in Quadrant III or Quadrant IV.

Since  tan θ  is positive,  θ  must lie in Quadrant I or III, and so  -θ  must lie in Quadrant II or IV.

 

So  -θ  must lie in Quadrant IV, and  cos(-θ)  must be positive.

 

cos(-θ)   =   4 / 5

hectictar  Mar 4, 2018
Sort: 

1+0 Answers

 #1
avatar+7048 
+4
Best Answer

By the Pythagorean identity...

 

sin2(-θ) + cos2(-θ)   =   1

                                             Plug in  (-3/5)  for  sin(-θ)

(-3/5)2 + cos2(-θ)   =   1

 

9/25   +  cos2(-θ)   =   1

                                             Subtract  9/25  from both sides of the equation.

cos2(-θ)   =   1  -  9/25

 

cos2(-θ)   =   16/25

                                             Take the  ±  square root of both sides.

cos(-θ)   =   ±√[ 16/25 ]

 

cos(-θ)   =   ± 4 / 5

 

Since  sin(-θ)  is negative,  -θ  must lie in Quadrant III or Quadrant IV.

Since  tan θ  is positive,  θ  must lie in Quadrant I or III, and so  -θ  must lie in Quadrant II or IV.

 

So  -θ  must lie in Quadrant IV, and  cos(-θ)  must be positive.

 

cos(-θ)   =   4 / 5

hectictar  Mar 4, 2018

27 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy