+0  
 
0
124
1
avatar+558 

What is the value of cos(−θ)?

SamJones  Mar 4, 2018

Best Answer 

 #1
avatar+7153 
+4

By the Pythagorean identity...

 

sin2(-θ) + cos2(-θ)   =   1

                                             Plug in  (-3/5)  for  sin(-θ)

(-3/5)2 + cos2(-θ)   =   1

 

9/25   +  cos2(-θ)   =   1

                                             Subtract  9/25  from both sides of the equation.

cos2(-θ)   =   1  -  9/25

 

cos2(-θ)   =   16/25

                                             Take the  ±  square root of both sides.

cos(-θ)   =   ±√[ 16/25 ]

 

cos(-θ)   =   ± 4 / 5

 

Since  sin(-θ)  is negative,  -θ  must lie in Quadrant III or Quadrant IV.

Since  tan θ  is positive,  θ  must lie in Quadrant I or III, and so  -θ  must lie in Quadrant II or IV.

 

So  -θ  must lie in Quadrant IV, and  cos(-θ)  must be positive.

 

cos(-θ)   =   4 / 5

hectictar  Mar 4, 2018
 #1
avatar+7153 
+4
Best Answer

By the Pythagorean identity...

 

sin2(-θ) + cos2(-θ)   =   1

                                             Plug in  (-3/5)  for  sin(-θ)

(-3/5)2 + cos2(-θ)   =   1

 

9/25   +  cos2(-θ)   =   1

                                             Subtract  9/25  from both sides of the equation.

cos2(-θ)   =   1  -  9/25

 

cos2(-θ)   =   16/25

                                             Take the  ±  square root of both sides.

cos(-θ)   =   ±√[ 16/25 ]

 

cos(-θ)   =   ± 4 / 5

 

Since  sin(-θ)  is negative,  -θ  must lie in Quadrant III or Quadrant IV.

Since  tan θ  is positive,  θ  must lie in Quadrant I or III, and so  -θ  must lie in Quadrant II or IV.

 

So  -θ  must lie in Quadrant IV, and  cos(-θ)  must be positive.

 

cos(-θ)   =   4 / 5

hectictar  Mar 4, 2018

2 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.