+0  
 
0
73
1
avatar+75 

A real-valued function f defined for nonzero real numbers satisties  f(1/x)+1/xf(-x) = 2x. What is the value of f(2)?

 Oct 16, 2018
 #1
avatar+3628 
+1

\(f\left(\dfrac 1 x\right)+\dfrac 1 x f(-x) = 2x ~;\text{now let }x \to -\dfrac 1 x \\ f(-x) -x f\left(\dfrac 1 x\right) = -\dfrac 2 x~; \text{and multiply by }\dfrac 1 x \\ \dfrac 1 x f(-x) - f\left(\dfrac 1 x\right) = -\dfrac{2}{x^2}\)

 

\(\text{now add this to the original equation }\\ \dfrac 2 x f(-x) = 2x - \dfrac{2}{x^2} = \dfrac{2x^3-2}{x^2} \\ f(-x) = \dfrac{x^3-1}{x} = x^2 - \dfrac 1 x\\ f(x) = x^2 + \dfrac 1 x\)

 

\(f(2) = 2^2 +\dfrac 1 2 = \dfrac 9 2\)

.
 Oct 17, 2018

35 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.