+0  
 
0
109
2
avatar

What is the value of the leading coefficient a if the polynomial function P(x) = a(x + b)2(x − c) has multiplicity of 2 at the point (–3, 0) and also passes through the points (2, 0) and (0, 36)?

Guest Mar 6, 2018
Sort: 

2+0 Answers

 #1
avatar+86622 
+1

If  we have a root  at  (-3,0)  with a multiplicity of 2  and the point (2,0) is aslo on the graph.....we have three roots.....but this is a polynomial of degree 2, so it can't possibly have three roots.....did you make a mistake ??

 

 

cool cool cool

CPhill  Mar 6, 2018
 #2
avatar+7056 
+1

P(x)   =   a(x + b)2(x - c)

P(x)   =   a(x + b)(x + b)(x - c)      Multiplied out.....

P(x)   =   ax3 - acx2 + 2abx2 - 2abcx + ab2x - ab2c     So  P(x)  does have a degree of  3 .

 

P(x)  has multiplicity of  2  at  (-3, 0)  and passes through  (2, 0)  so...

 

P(x)  =  a(x + 3)2(x - 2)

 

P(x)  passes through  (0, 36)  so  P(0)  =  36

 

P(0)  =  a(0 + 3)2(0 - 2)

36   =   a(0 + 3)2(0 - 2)

36   =   a(9)(-2)

36   =   -18a

a   =   -2

 

Here's a graph:  https://www.desmos.com/calculator/ic91u5dxbl

hectictar  Mar 7, 2018

12 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy