+0  
 
0
265
2
avatar

What is the value of the leading coefficient a if the polynomial function P(x) = a(x + b)2(x − c) has multiplicity of 2 at the point (–3, 0) and also passes through the points (2, 0) and (0, 36)?

Guest Mar 6, 2018
 #1
avatar+88839 
+1

If  we have a root  at  (-3,0)  with a multiplicity of 2  and the point (2,0) is aslo on the graph.....we have three roots.....but this is a polynomial of degree 2, so it can't possibly have three roots.....did you make a mistake ??

 

 

cool cool cool

CPhill  Mar 6, 2018
 #2
avatar+7266 
+1

P(x)   =   a(x + b)2(x - c)

P(x)   =   a(x + b)(x + b)(x - c)      Multiplied out.....

P(x)   =   ax3 - acx2 + 2abx2 - 2abcx + ab2x - ab2c     So  P(x)  does have a degree of  3 .

 

P(x)  has multiplicity of  2  at  (-3, 0)  and passes through  (2, 0)  so...

 

P(x)  =  a(x + 3)2(x - 2)

 

P(x)  passes through  (0, 36)  so  P(0)  =  36

 

P(0)  =  a(0 + 3)2(0 - 2)

36   =   a(0 + 3)2(0 - 2)

36   =   a(9)(-2)

36   =   -18a

a   =   -2

 

Here's a graph:  https://www.desmos.com/calculator/ic91u5dxbl

hectictar  Mar 7, 2018

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.