What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201? Express your answer as a fraction in simplest form.
What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?
Express your answer as a fraction in simplest form.
11∗3+13∗5+15∗7+17∗9+…+1199∗201=11∗3+13∗5+15∗7+17∗9+…+1(2n−1)(2n+1)1(2n−1)(2n+1)=12(12n−1−12n+1)11∗3=12(11−13)13∗5=12(13−15)15∗7=12(15−17)17∗9=12(17−19)…1199∗201=12(1199−1201)=12(11−13)+12(13−15)+12(15−17)+12(17−19)+…+12(1199−1201)=12(11−13+13⏟=0−15+15⏟=0−17+17⏟=0−19+19⏟=0+…−1199+1199⏟=0−1201)=12(11−1201)=12(1−1201)=12(201−1201)=12(200201)=100201
What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?
Express your answer as a fraction in simplest form.
11∗3+13∗5+15∗7+17∗9+…+1199∗201=11∗3+13∗5+15∗7+17∗9+…+1(2n−1)(2n+1)1(2n−1)(2n+1)=12(12n−1−12n+1)11∗3=12(11−13)13∗5=12(13−15)15∗7=12(15−17)17∗9=12(17−19)…1199∗201=12(1199−1201)=12(11−13)+12(13−15)+12(15−17)+12(17−19)+…+12(1199−1201)=12(11−13+13⏟=0−15+15⏟=0−17+17⏟=0−19+19⏟=0+…−1199+1199⏟=0−1201)=12(11−1201)=12(1−1201)=12(201−1201)=12(200201)=100201