Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
21
14869
3
avatar+647 

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201? Express your answer as a fraction in simplest form.

 Sep 20, 2017

Best Answer 

 #3
avatar+26396 
+1

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?

Express your answer as a fraction in simplest form.

 

113+135+157+179++1199201=113+135+157+179++1(2n1)(2n+1)1(2n1)(2n+1)=12(12n112n+1)113=12(1113)135=12(1315)157=12(1517)179=12(1719)1199201=12(11991201)=12(1113)+12(1315)+12(1517)+12(1719)++12(11991201)=12(1113+13=015+15=017+17=019+19=0+1199+1199=01201)=12(111201)=12(11201)=12(2011201)=12(200201)=100201

 

laugh

 Sep 20, 2017
 #1
avatar
0

∑[1/((2 n + 1) (2 n + 3)),n, 0, 201] =202/405 =~converges to 1/2.

 Sep 20, 2017
 #2
avatar+647 
0

I think that's incorrect

 Sep 20, 2017
 #3
avatar+26396 
+1
Best Answer

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?

Express your answer as a fraction in simplest form.

 

113+135+157+179++1199201=113+135+157+179++1(2n1)(2n+1)1(2n1)(2n+1)=12(12n112n+1)113=12(1113)135=12(1315)157=12(1517)179=12(1719)1199201=12(11991201)=12(1113)+12(1315)+12(1517)+12(1719)++12(11991201)=12(1113+13=015+15=017+17=019+19=0+1199+1199=01201)=12(111201)=12(11201)=12(2011201)=12(200201)=100201

 

laugh

heureka Sep 20, 2017

1 Online Users

avatar