+0  
 
0
3
1284
3
avatar+644 

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201? Express your answer as a fraction in simplest form.

waffles  Sep 20, 2017

Best Answer 

 #3
avatar+19835 
+1

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?

Express your answer as a fraction in simplest form.

 

\(\begin{array}{rcll} && \frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7}+ \frac{1}{7*9}+\ldots+\frac{1}{199*201} \\ &=& \frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7}+ \frac{1}{7*9}+\ldots+\frac{1}{(2n-1)(2n+1)} \\ \hline && \frac{1}{(2n-1)(2n+1)} = \frac12\left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \\ && \frac{1}{1*3} = \frac12\left( \frac{1}{1} - \frac{1}{3} \right) \\ && \frac{1}{3*5} = \frac12\left( \frac{1}{3} - \frac{1}{5} \right) \\ && \frac{1}{5*7} = \frac12\left( \frac{1}{5} - \frac{1}{7} \right) \\ && \frac{1}{7*9} = \frac12\left( \frac{1}{7} - \frac{1}{9} \right) \\ && \ldots \\ && \frac{1}{199*201} = \frac12\left( \frac{1}{199} - \frac{1}{201} \right) \\ \hline &=& \frac12\left( \frac{1}{1} - \frac{1}{3} \right) + \frac12\left( \frac{1}{3} - \frac{1}{5} \right) + \frac12\left( \frac{1}{5} - \frac{1}{7} \right) + \frac12\left( \frac{1}{7} - \frac{1}{9} \right)+\ldots+\frac12\left( \frac{1}{199} - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{1}{1} - \underbrace{\frac{1}{3} + \frac{1}{3}}_{=0} - \underbrace{\frac{1}{5}+\frac{1}{5}}_{=0} - \underbrace{\frac{1}{7} + \frac{1}{7}}_{=0} - \underbrace{\frac{1}{9}+ \frac{1}{9}}_{=0} +\ldots- \underbrace{\frac{1}{199}+\frac{1}{199}}_{=0} - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{1}{1} - \frac{1}{201} \right) \\ &=& \frac12\left( 1 - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{201-1}{201} \right) \\ &=& \frac12\left( \frac{200}{201} \right) \\ &=& \frac{100}{201} \\ \end{array} \)

 

laugh

heureka  Sep 20, 2017
 #1
avatar
0

∑[1/((2 n + 1) (2 n + 3)),n, 0, 201] =202/405 =~converges to 1/2.

Guest Sep 20, 2017
 #2
avatar+644 
0

I think that's incorrect

waffles  Sep 20, 2017
 #3
avatar+19835 
+1
Best Answer

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?

Express your answer as a fraction in simplest form.

 

\(\begin{array}{rcll} && \frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7}+ \frac{1}{7*9}+\ldots+\frac{1}{199*201} \\ &=& \frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7}+ \frac{1}{7*9}+\ldots+\frac{1}{(2n-1)(2n+1)} \\ \hline && \frac{1}{(2n-1)(2n+1)} = \frac12\left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \\ && \frac{1}{1*3} = \frac12\left( \frac{1}{1} - \frac{1}{3} \right) \\ && \frac{1}{3*5} = \frac12\left( \frac{1}{3} - \frac{1}{5} \right) \\ && \frac{1}{5*7} = \frac12\left( \frac{1}{5} - \frac{1}{7} \right) \\ && \frac{1}{7*9} = \frac12\left( \frac{1}{7} - \frac{1}{9} \right) \\ && \ldots \\ && \frac{1}{199*201} = \frac12\left( \frac{1}{199} - \frac{1}{201} \right) \\ \hline &=& \frac12\left( \frac{1}{1} - \frac{1}{3} \right) + \frac12\left( \frac{1}{3} - \frac{1}{5} \right) + \frac12\left( \frac{1}{5} - \frac{1}{7} \right) + \frac12\left( \frac{1}{7} - \frac{1}{9} \right)+\ldots+\frac12\left( \frac{1}{199} - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{1}{1} - \underbrace{\frac{1}{3} + \frac{1}{3}}_{=0} - \underbrace{\frac{1}{5}+\frac{1}{5}}_{=0} - \underbrace{\frac{1}{7} + \frac{1}{7}}_{=0} - \underbrace{\frac{1}{9}+ \frac{1}{9}}_{=0} +\ldots- \underbrace{\frac{1}{199}+\frac{1}{199}}_{=0} - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{1}{1} - \frac{1}{201} \right) \\ &=& \frac12\left( 1 - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{201-1}{201} \right) \\ &=& \frac12\left( \frac{200}{201} \right) \\ &=& \frac{100}{201} \\ \end{array} \)

 

laugh

heureka  Sep 20, 2017

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.