+0  
 
+5
195
2
avatar

what is the vertex of this equation 3x^2-11x-4=y

Guest Mar 6, 2017

Best Answer 

 #1
avatar+87309 
+5

3x^2-11x-4=y

 

We have the form

 

Ax^2 + Bx + C   = y

 

The x coordinate of the vertex is given by :  -B/ (2A)  = - (-11) / (2*3)  = 11/6

 

To find the y coordinate.....put this x value back into the function....and we have

 

3(11/6)^2 - 11(11/6) - 4

 

3(121/36) - 121/6 - 4

 

121/12 - 121/6 - 4

 

121/12 - 242/12 - 48/12  =

 

-169/12

 

So....the vertex is ( 11/6, -169/12 )

 

 

cool cool cool

CPhill  Mar 6, 2017
 #1
avatar+87309 
+5
Best Answer

3x^2-11x-4=y

 

We have the form

 

Ax^2 + Bx + C   = y

 

The x coordinate of the vertex is given by :  -B/ (2A)  = - (-11) / (2*3)  = 11/6

 

To find the y coordinate.....put this x value back into the function....and we have

 

3(11/6)^2 - 11(11/6) - 4

 

3(121/36) - 121/6 - 4

 

121/12 - 121/6 - 4

 

121/12 - 242/12 - 48/12  =

 

-169/12

 

So....the vertex is ( 11/6, -169/12 )

 

 

cool cool cool

CPhill  Mar 6, 2017
 #2
avatar+19653 
+5

what is the vertex of this equation 3x^2-11x-4=y

 

Formula:

\(\begin{array}{|rcll|} \hline ax^2+bx+c &=& 0 \\\\ x_v &=& -\frac{b}{2a} \\ y_v &=& c - \frac{b^2}{4a} \\ \hline \end{array}\)

 

Vertex:

\(\begin{array}{|rcll|} \hline y &=& 3x^2-11x-4 \quad & | \qquad a = 3 \qquad b=-11 \qquad c = -4 \\\\ x_v &=& -\frac{(-11)}{2\cdot 3} \\ &=& \frac{11}{6} \\ \mathbf{x_v} &\mathbf{=}& \mathbf{1.8\bar{3}} \\\\ y_v &=& -4 - \frac{(-11)^2}{4\cdot 3} \\ &=& -4 - \frac{121}{12} \\ &=& -\frac{169}{12} \\ \mathbf{y_v} &\mathbf{=}& \mathbf{-14.08\bar{3}} \\ \hline \end{array}\)

 

laugh

heureka  Mar 6, 2017

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.