+0  
 
0
572
3
avatar

what is x if the equation is 2(tan-1(x/160)) = tan-1(x/60)?

Guest Jul 9, 2015

Best Answer 

 #1
avatar+20040 
+10

what is x if the equation is 2(tan-1(x/160)) = tan-1(x/60) ?

 

$$\small{\text{$
\begin{array}{rclrcl}
2 \cdot \left[ \arctan{ \left( \dfrac{ x } { 160 } \right) } \right]
&=& \arctan{ \left( \dfrac{ x } { 60 } \right) } \qquad | \qquad
\varphi = \arctan{ \left( \dfrac{ x } { 160 } \right) } \\\\
2\cdot \varphi &=& \arctan{ \left( \dfrac{ x } { 60 } \right) }
\qquad |\qquad \tan{()}\\\\
\tan{ (2\cdot \varphi) } &=& \dfrac{x}{60} \\\\
&& &\tan{ (2\cdot \varphi) }
&=& \dfrac{ 2\cdot\tan{(\varphi)} } { 1-[\tan{(\varphi)]^2} } \\\\\
&& &\tan{ (2\cdot \varphi) }
&=& \dfrac{ 2\cdot\tan{(
\arctan{ \left( \dfrac{ x } { 160 } \right) }
)} } { 1-[\tan{(
\arctan{ \left( \dfrac{ x } { 160 } \right) }
)]^2} } \\\\\
&& &\tan{ (2\cdot \varphi) }
&=& \dfrac{ 2\cdot \dfrac{ x } { 160 } }
{ 1- \left( \dfrac{ x } { 160 } \right)^2 } \\\\\
\dfrac{ 2\cdot \dfrac{ x } { 160 } }
{ 1- \left( \dfrac{ x } { 160 } \right)^2 } &=& \dfrac{x}{60} \\\\
\dfrac{ 1 }
{ 1- \left( \dfrac{ x } { 160 } \right)^2 } &=& \dfrac{4}{3} \\\\
1- \left( \dfrac{ x } { 160 } \right)^2 &=& \dfrac{3}{4} \\\\
\left( \dfrac{ x } { 160 } \right)^2 &=& \dfrac{1}{4} \qquad | \qquad \pm\sqrt{}\\\\
\dfrac{ x } { 160 } &=& \pm0.5 \\\\
x &=& \pm0.5 \cdot 160 \\\\
\mathbf{x_1} & \mathbf{=} & \mathbf{80} \\\\
\mathbf{x_2} & \mathbf{=} & \mathbf{-80} \\\\
\end{array}
$}}$$

 

heureka  Jul 10, 2015
 #1
avatar+20040 
+10
Best Answer

what is x if the equation is 2(tan-1(x/160)) = tan-1(x/60) ?

 

$$\small{\text{$
\begin{array}{rclrcl}
2 \cdot \left[ \arctan{ \left( \dfrac{ x } { 160 } \right) } \right]
&=& \arctan{ \left( \dfrac{ x } { 60 } \right) } \qquad | \qquad
\varphi = \arctan{ \left( \dfrac{ x } { 160 } \right) } \\\\
2\cdot \varphi &=& \arctan{ \left( \dfrac{ x } { 60 } \right) }
\qquad |\qquad \tan{()}\\\\
\tan{ (2\cdot \varphi) } &=& \dfrac{x}{60} \\\\
&& &\tan{ (2\cdot \varphi) }
&=& \dfrac{ 2\cdot\tan{(\varphi)} } { 1-[\tan{(\varphi)]^2} } \\\\\
&& &\tan{ (2\cdot \varphi) }
&=& \dfrac{ 2\cdot\tan{(
\arctan{ \left( \dfrac{ x } { 160 } \right) }
)} } { 1-[\tan{(
\arctan{ \left( \dfrac{ x } { 160 } \right) }
)]^2} } \\\\\
&& &\tan{ (2\cdot \varphi) }
&=& \dfrac{ 2\cdot \dfrac{ x } { 160 } }
{ 1- \left( \dfrac{ x } { 160 } \right)^2 } \\\\\
\dfrac{ 2\cdot \dfrac{ x } { 160 } }
{ 1- \left( \dfrac{ x } { 160 } \right)^2 } &=& \dfrac{x}{60} \\\\
\dfrac{ 1 }
{ 1- \left( \dfrac{ x } { 160 } \right)^2 } &=& \dfrac{4}{3} \\\\
1- \left( \dfrac{ x } { 160 } \right)^2 &=& \dfrac{3}{4} \\\\
\left( \dfrac{ x } { 160 } \right)^2 &=& \dfrac{1}{4} \qquad | \qquad \pm\sqrt{}\\\\
\dfrac{ x } { 160 } &=& \pm0.5 \\\\
x &=& \pm0.5 \cdot 160 \\\\
\mathbf{x_1} & \mathbf{=} & \mathbf{80} \\\\
\mathbf{x_2} & \mathbf{=} & \mathbf{-80} \\\\
\end{array}
$}}$$

 

heureka  Jul 10, 2015
 #2
avatar+27062 
+5

There is also the trivial solution x= 0

.

Alan  Jul 10, 2015
 #3
avatar+93691 
+5

I have only just now had a chance to look at your answer Heureka.

I really like it.      

 

 

I have added this thread address to our "Great Answers to Learn From" sticky thread.  :)

Melody  Jul 16, 2015

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.