Nothing......at least in a real number sense......
To see this let x be the first number and 8- x the second number...so we have
x (8 - x) = 33 simplify
-x^2 + 8x = 33
-x^2 + 8x - 33 = 0 multiply through by -1
x^2 - 8x + 33 = 0 using the onsite calculator, we have
$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{33}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{17}}}}{\mathtt{\,\times\,}}{i}\\
{\mathtt{x}} = {\sqrt{{\mathtt{17}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{4.123\: \!105\: \!625\: \!617\: \!660\: \!5}}{i}\\
{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4.123\: \!105\: \!625\: \!617\: \!660\: \!5}}{i}\\
\end{array} \right\}$$
Notice that we have solutions.....just not "real" ones.....
Nothing......at least in a real number sense......
To see this let x be the first number and 8- x the second number...so we have
x (8 - x) = 33 simplify
-x^2 + 8x = 33
-x^2 + 8x - 33 = 0 multiply through by -1
x^2 - 8x + 33 = 0 using the onsite calculator, we have
$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{33}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{17}}}}{\mathtt{\,\times\,}}{i}\\
{\mathtt{x}} = {\sqrt{{\mathtt{17}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{4.123\: \!105\: \!625\: \!617\: \!660\: \!5}}{i}\\
{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4.123\: \!105\: \!625\: \!617\: \!660\: \!5}}{i}\\
\end{array} \right\}$$
Notice that we have solutions.....just not "real" ones.....