+0  
 
0
467
3
avatar+7001 

I was doing some integrations and one of the problems is: \(\displaystyle \int x^3\sqrt{9-x^2}\mathtt{dx}\)

The answer says: \(-\dfrac{x^2}{3}(9-x^2)^{3/2}-\dfrac{2}{15}(9-x^2)^{5/2}+C\)

Here is my answer:

\(\qquad\displaystyle \int x^3\sqrt{9-x^2}\mathtt{dx}\\ \text{Let }u=x^3, dv=\sqrt{9-x^2}dx, du = 3x^2dx, v=\dfrac{x\sqrt{9-x^2}+9\arcsin(\dfrac{x}{3})}{2}\\ =\dfrac{x^4\sqrt{9-x^2}+9x^3\arcsin(\dfrac{x}{3})}{2}+\dfrac{(3x^2+18)\sqrt{(9-x^2)^3}-45x^3\arcsin(\dfrac{x}{3})-\sqrt{9-x^2}(15x^2+270)}{10}+C\\ =\dfrac{x^4\sqrt{9-x^2}}{2}+\dfrac{(3x^2+18)(9-x^2)^{3/2}}{10}+\sqrt{9-x^2}(\dfrac{3x^2}{2}+27)+C\)

WHAT IS GOING ON!!!!

MaxWong  Apr 13, 2017
 #1
avatar+1508 
0

????      

MysticalJaycat  Apr 13, 2017
 #2
avatar
0

Take the integral:
 integral x^3 sqrt(9 - x^2) dx

For the integrand x^3 sqrt(9 - x^2), substitute u = x^2 and du = 2 x dx:
 = 1/2 integral sqrt(9 - u) u du
For the integrand sqrt(9 - u) u, substitute s = 9 - u and ds = - du:

= 1/2 integral(s - 9) sqrt(s) ds
Expanding the integrand (s - 9) sqrt(s) gives s^(3/2) - 9 sqrt(s):
 = 1/2 integral(s^(3/2) - 9 sqrt(s)) ds
Integrate the sum term by term and factor out constants:
 = 1/2 integral s^(3/2) ds - 9/2 integral sqrt(s) ds
The integral of s^(3/2) is (2 s^(5/2))/5:
 = s^(5/2)/5 - 9/2 integral sqrt(s) ds
The integral of sqrt(s) is (2 s^(3/2))/3:
 = s^(5/2)/5 - 3 s^(3/2) + constant
Substitute back for s = 9 - u:
 = 1/5 (9 - u)^(5/2) - 3 (9 - u)^(3/2) + constant
Substitute back for u = x^2:
 = 1/5 (9 - x^2)^(5/2) - 3 (9 - x^2)^(3/2) + constant
Which is equal to:
Answer: | = -1/5 (9 - x^2)^(3/2) (x^2 + 6) + constant

Guest Apr 13, 2017
 #3
avatar
0

Max: Check your answer against this step-by-step answer here:

http://www.integral-calculator.com/

Guest Apr 13, 2017

26 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.