+0  
 
-2
64
1
avatar+7 

\(f(x) = \left\{ \begin{array}{c l} \dfrac{-5x^{2}+4x+12}{-3x^{2}+x+10}, & \, x \neq 2 \\ C, & \, x = 2 \end{array} \right.\)

 

What value of C would make f(x) continuous at x = 2?

  • Decimal approximations are not allowed for this problem.
  • Compute the exact value for C and express your answer algebraically.
 Feb 23, 2022
 #1
avatar+122390 
+1

Factor  the numerator as   (5x + 6) ( - x + 2)

Factor the denominator as  ( 3x + 5) ( -x + 2)

 

We are left with

 

(5x + 6)  /( 3x + 5)

 

The value of C  that makes this  continuous at x = 2   is     ( 5 (2) + 6)  / (3(2) + 5) =   16 / 11

 

 

cool cool cool

 Feb 23, 2022

15 Online Users