+0  
 
0
234
2
avatar

whats 8 to the power of 2015?

Guest Jun 16, 2015

Best Answer 

 #2
avatar+90996 
+10

$${{\mathtt{8}}}^{{\mathtt{2\,015}}} \approx \infty$$

 

The calculator did not help too much anon.    

The answer is big but it is not infinity anon :)

Let

$$\\y=8^{2015}\\\\
log(y)=log(8^{2015})\\\\
log(y)=2015log(8)\\\\$$

 

$${\mathtt{2\,015}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{8}}\right) = {\mathtt{1\,819.726\: \!323\: \!788\: \!766\: \!152\: \!5}}$$

 

$$\\y=10^{1819.7263237887661525}\\\\
y=10^{1819}*10^{0.7263237887661525}\\\\$$

 

$${{\mathtt{10}}}^{{\mathtt{0.726\: \!323\: \!788\: \!766\: \!152\: \!5}}} = {\mathtt{5.325\: \!051\: \!211\: \!327\: \!235\: \!4}}$$

 

so

 

$$\\8^{2105}\approx 5.32505\times 10^{1819}$$

Melody  Jun 16, 2015
Sort: 

2+0 Answers

 #1
avatar
0

Try the calculator

Guest Jun 16, 2015
 #2
avatar+90996 
+10
Best Answer

$${{\mathtt{8}}}^{{\mathtt{2\,015}}} \approx \infty$$

 

The calculator did not help too much anon.    

The answer is big but it is not infinity anon :)

Let

$$\\y=8^{2015}\\\\
log(y)=log(8^{2015})\\\\
log(y)=2015log(8)\\\\$$

 

$${\mathtt{2\,015}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{8}}\right) = {\mathtt{1\,819.726\: \!323\: \!788\: \!766\: \!152\: \!5}}$$

 

$$\\y=10^{1819.7263237887661525}\\\\
y=10^{1819}*10^{0.7263237887661525}\\\\$$

 

$${{\mathtt{10}}}^{{\mathtt{0.726\: \!323\: \!788\: \!766\: \!152\: \!5}}} = {\mathtt{5.325\: \!051\: \!211\: \!327\: \!235\: \!4}}$$

 

so

 

$$\\8^{2105}\approx 5.32505\times 10^{1819}$$

Melody  Jun 16, 2015

3 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details