We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
542
2
avatar

whats 8 to the power of 2015?

 Jun 16, 2015

Best Answer 

 #2
avatar+101733 
+10

$${{\mathtt{8}}}^{{\mathtt{2\,015}}} \approx \infty$$

 

The calculator did not help too much anon.    

The answer is big but it is not infinity anon :)

Let

$$\\y=8^{2015}\\\\
log(y)=log(8^{2015})\\\\
log(y)=2015log(8)\\\\$$

 

$${\mathtt{2\,015}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{8}}\right) = {\mathtt{1\,819.726\: \!323\: \!788\: \!766\: \!152\: \!5}}$$

 

$$\\y=10^{1819.7263237887661525}\\\\
y=10^{1819}*10^{0.7263237887661525}\\\\$$

 

$${{\mathtt{10}}}^{{\mathtt{0.726\: \!323\: \!788\: \!766\: \!152\: \!5}}} = {\mathtt{5.325\: \!051\: \!211\: \!327\: \!235\: \!4}}$$

 

so

 

$$\\8^{2105}\approx 5.32505\times 10^{1819}$$

.
 Jun 16, 2015
 #1
avatar
0

Try the calculator

 Jun 16, 2015
 #2
avatar+101733 
+10
Best Answer

$${{\mathtt{8}}}^{{\mathtt{2\,015}}} \approx \infty$$

 

The calculator did not help too much anon.    

The answer is big but it is not infinity anon :)

Let

$$\\y=8^{2015}\\\\
log(y)=log(8^{2015})\\\\
log(y)=2015log(8)\\\\$$

 

$${\mathtt{2\,015}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{8}}\right) = {\mathtt{1\,819.726\: \!323\: \!788\: \!766\: \!152\: \!5}}$$

 

$$\\y=10^{1819.7263237887661525}\\\\
y=10^{1819}*10^{0.7263237887661525}\\\\$$

 

$${{\mathtt{10}}}^{{\mathtt{0.726\: \!323\: \!788\: \!766\: \!152\: \!5}}} = {\mathtt{5.325\: \!051\: \!211\: \!327\: \!235\: \!4}}$$

 

so

 

$$\\8^{2105}\approx 5.32505\times 10^{1819}$$

Melody Jun 16, 2015

20 Online Users

avatar
avatar
avatar