+0  
 
0
434
2
avatar

whats 8 to the power of 2015?

Guest Jun 16, 2015

Best Answer 

 #2
avatar+93691 
+10

$${{\mathtt{8}}}^{{\mathtt{2\,015}}} \approx \infty$$

 

The calculator did not help too much anon.    

The answer is big but it is not infinity anon :)

Let

$$\\y=8^{2015}\\\\
log(y)=log(8^{2015})\\\\
log(y)=2015log(8)\\\\$$

 

$${\mathtt{2\,015}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{8}}\right) = {\mathtt{1\,819.726\: \!323\: \!788\: \!766\: \!152\: \!5}}$$

 

$$\\y=10^{1819.7263237887661525}\\\\
y=10^{1819}*10^{0.7263237887661525}\\\\$$

 

$${{\mathtt{10}}}^{{\mathtt{0.726\: \!323\: \!788\: \!766\: \!152\: \!5}}} = {\mathtt{5.325\: \!051\: \!211\: \!327\: \!235\: \!4}}$$

 

so

 

$$\\8^{2105}\approx 5.32505\times 10^{1819}$$

Melody  Jun 16, 2015
 #1
avatar
0

Try the calculator

Guest Jun 16, 2015
 #2
avatar+93691 
+10
Best Answer

$${{\mathtt{8}}}^{{\mathtt{2\,015}}} \approx \infty$$

 

The calculator did not help too much anon.    

The answer is big but it is not infinity anon :)

Let

$$\\y=8^{2015}\\\\
log(y)=log(8^{2015})\\\\
log(y)=2015log(8)\\\\$$

 

$${\mathtt{2\,015}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{8}}\right) = {\mathtt{1\,819.726\: \!323\: \!788\: \!766\: \!152\: \!5}}$$

 

$$\\y=10^{1819.7263237887661525}\\\\
y=10^{1819}*10^{0.7263237887661525}\\\\$$

 

$${{\mathtt{10}}}^{{\mathtt{0.726\: \!323\: \!788\: \!766\: \!152\: \!5}}} = {\mathtt{5.325\: \!051\: \!211\: \!327\: \!235\: \!4}}$$

 

so

 

$$\\8^{2105}\approx 5.32505\times 10^{1819}$$

Melody  Jun 16, 2015

19 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.