+0  
 
0
661
2
avatar+980 

Whats the area of a rhombus thats angles are 120, 120, 60, and 60 who's sides all equal six.

 Jul 29, 2020
 #1
avatar+1094 
+9

The great thing about this problem is that the angles are 120, 120, 60, 60, which means that you can divide this rhombus into two equilateral triangles. 

Using the area formula for euqilateral triangles ,\(\frac{\sqrt{3}}{4} a^{2}\), we see that  the areas of each triangle is \(9\sqrt 3\). Multiply that by 2, and you get your answer: \(\boxed{18\sqrt 3}\)

 Jul 29, 2020
 #2
avatar+680 
+4

You could also use an alternate solution by using the diagonal formula for a rhombus area. That formula is multiply the diagonals together and divide by 2.

 Jul 29, 2020

2 Online Users

avatar