Do you mean the 3's to go on forever? If so, then try 604/300
$${\frac{{\mathtt{604}}}{{\mathtt{300}}}} = {\frac{{\mathtt{151}}}{{\mathtt{75}}}} = {\mathtt{2.013\: \!333\: \!333\: \!333\: \!333\: \!3}}$$
.
$${\frac{{\mathtt{1\,812}}}{{\mathtt{900}}}} = {\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{151}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{75}}\right)}} = {\frac{{\mathtt{151}}}{{\mathtt{75}}}}$$