+0

# Whats the generating fraction of 2.01333 ????. PLZZ HELP!!!

0
1369
2
+1222

2.01333=> generating fraction

Jul 11, 2015

#1
+33616
+10

Do you mean the 3's to go on forever?  If so, then try 604/300

$${\frac{{\mathtt{604}}}{{\mathtt{300}}}} = {\frac{{\mathtt{151}}}{{\mathtt{75}}}} = {\mathtt{2.013\: \!333\: \!333\: \!333\: \!333\: \!3}}$$

.

Jul 11, 2015

#1
+33616
+10

Do you mean the 3's to go on forever?  If so, then try 604/300

$${\frac{{\mathtt{604}}}{{\mathtt{300}}}} = {\frac{{\mathtt{151}}}{{\mathtt{75}}}} = {\mathtt{2.013\: \!333\: \!333\: \!333\: \!333\: \!3}}$$

.

Alan Jul 11, 2015
#2
+14538
+8

#### x= $${\frac{{\mathtt{1\,812}}}{{\mathtt{900}}}} = {\frac{{\mathtt{151}}}{{\mathtt{75}}}} = {\mathtt{2.013\: \!333\: \!333\: \!333\: \!333\: \!3}}$$

$${\frac{{\mathtt{1\,812}}}{{\mathtt{900}}}} = {\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{151}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{75}}\right)}} = {\frac{{\mathtt{151}}}{{\mathtt{75}}}}$$

Jul 11, 2015