+0  
 
0
43
3
avatar+300 

When the expression \((2^1)(2^2)(2^3)\cdots (2^{99})(2^{100}) \) is written as an integer, what is the product of the tens digit and the ones digit?

RektTheNoob  Feb 3, 2018
Sort: 

3+0 Answers

 #1
avatar
+3

2^1 x 2^2 x2^3 x.........x 2^99 X 2^100 =2^(1+2+3+.......+99+100) =2^(100 x 101) / 2 =2^5050.

Any power of 2 ending in: 10, 30, 50, 70, 90 will have the last 2 digits as =.....24.

Guest Feb 3, 2018
 #2
avatar+91797 
+3

When the expression  \((2^1)(2^2)(2^3)\cdots (2^{99})(2^{100})\)    is written as an integer,

what is the product of the tens digit and the ones digit?

 

1+2+3+.....100 = 100/2(1+100)= 50*101 = 5050

 

so this is 

 

   \(2^{5050}=(2^{25*202})\\ =((2^{25})^{202})\\ \text{now only considering the last two digits}\\ \equiv (32)^{202}\\ \equiv (32)^{101*2}\\ \equiv (32^2)^{101}\\ \equiv (24)^{101}\\ \equiv 24*(24)^{100}\\ \equiv 24*((24)^{5})^{20}\\ \equiv 24*(24)^{5*4}\\ \equiv 24*24^4\\ \equiv 24 \)

 

This is probably not the best way to do it though :/

Melody  Feb 3, 2018
edited by Melody  Feb 3, 2018
 #3
avatar+82944 
+2

(2^1) (2^2) (2^3)......(2^99) (2^100)  =

 

2^(1 + 2 + 3 + ...+  99 + 100)  =

 

2^(5050)  =

 

(2^10)^505

 

Note that 2^10    ends in 24

 

And note the pattern of 24

 

24^5 ends in 24

24^10  ends in 76

24^15  ends in 24  ....etc....

 

So......  (....24)^[5 (2n - 1) ]    ends   in 24....when n is a positive integer

 

So

 

(2^10)^505    =

 

(.....24)^505  =

 

(  ...24 ) ^[ 5 (2 * 51 - 1) ]   .......ends in 24

 

 

 

 

 

 

cool cool cool

CPhill  Feb 3, 2018
edited by CPhill  Feb 3, 2018

14 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details