We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
462
2
avatar

When the polynomial P(x) = 6x3 + kx2 + x − 2 is divided by x + 2, the remainder is 0. Which of the following is also a factor of P(x)?

 

A:3x-1

B:3x+1

C:2x-1

D:x-1

 

 

 

 

Please help I am confused : )

 Mar 13, 2018
 #1
avatar+23064 
+1

When the polynomial P(x) = 6x3 + kx2 + x − 2 is divided by x + 2, the remainder is 0.

Which of the following is also a factor of P(x)?

A:3x-1

B:3x+1

C:2x-1

D:x-1

 

polynomial long division:

\(6x^3 + kx^2 + x - 2 : x + 2 = 6x^2+kx - 12x -2k+25 + \underbrace{\dfrac{4k-52}{x+2}}_{=0} \\ 6x^3 + kx^2 + x - 2 : x + 2 = 6x^2+kx - 12x -2k+25 + 0 \)

 

remainder is 0:

\(\begin{array}{|rcll|} \hline \dfrac{4k-52}{x+2} &=& 0 \\ 4k-52 &=& 0 \\ 4k &=& 52 \\ \mathbf{ k } & \mathbf{=} & \mathbf{13} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 6x^3 + kx^2 + x - 2 : x + 2 &=& 6x^2+kx - 12x -2k+25 + 0 \quad & | \quad k = 13 \\ &=& 6x^2+13x - 12x -26+25 \\ &=& 6x^2+x -1 \\ &=& (3x-1)(2x+1) \\\\ \mathbf{ 6x^3 + kx^2 + x - 2 } & \mathbf{=} & \mathbf{(x+2)(3x-1)(2x+1)} \\ \hline \end{array} \)

 

A:3x-1

 

laugh

 Mar 13, 2018
 #2
avatar+103689 
+1

 

When the polynomial P(x) = 6x3 + kx2 + x − 2 is divided by x + 2, the remainder is 0. Which of the following is also a factor of P(x)?

 

A:3x-1

B:3x+1

C:2x-1

D:x-1

 

If x+2 is a factor then f(-2)=0

so

\(P(2) = 6*(-2)^3 + k*(-2)^2 + (-2)− 2=0\\ 6*-8 + 4k-4=0\\ 4k=52\\ k=13\\ so\\ p(x)=6x^3+13x^2+x-2\)

 

If 3x-1 is a factor then x=1/3  will be a zero I can check this with the calcuator

6*(1/3)^3+13*(1/3)^2+(1/3)-2 = 0    So  (3x-1) IS a factor

 

If 3x+1 is a facor then  f(-1/3) = 0

6*(-1/3)^3+13*(-1/3)^2+(-1/3)-2 = -1.1111111111111111    No 3x+1 is not a factor

 

If 2x-1 is a factor then f(1/2)=0

6*(1/2)^3+13*(1/2)^2+(1/2)-2 = 2.5    No 2x-1 is not a factor

 

If x-1 is a factor then f(1)=0

6*(1)^3+13*(1)^2+(1)-2 = 18     No that isn't a factor either     

 

I have determined this without any algebraic division.   laugh

 Mar 13, 2018

29 Online Users

avatar
avatar
avatar