+0  
 
0
93
2
avatar

When the polynomial P(x) = 6x3 + kx2 + x − 2 is divided by x + 2, the remainder is 0. Which of the following is also a factor of P(x)?

 

A:3x-1

B:3x+1

C:2x-1

D:x-1

 

 

 

 

Please help I am confused : )

Guest Mar 13, 2018
Sort: 

2+0 Answers

 #1
avatar+19344 
+1

When the polynomial P(x) = 6x3 + kx2 + x − 2 is divided by x + 2, the remainder is 0.

Which of the following is also a factor of P(x)?

A:3x-1

B:3x+1

C:2x-1

D:x-1

 

polynomial long division:

\(6x^3 + kx^2 + x - 2 : x + 2 = 6x^2+kx - 12x -2k+25 + \underbrace{\dfrac{4k-52}{x+2}}_{=0} \\ 6x^3 + kx^2 + x - 2 : x + 2 = 6x^2+kx - 12x -2k+25 + 0 \)

 

remainder is 0:

\(\begin{array}{|rcll|} \hline \dfrac{4k-52}{x+2} &=& 0 \\ 4k-52 &=& 0 \\ 4k &=& 52 \\ \mathbf{ k } & \mathbf{=} & \mathbf{13} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 6x^3 + kx^2 + x - 2 : x + 2 &=& 6x^2+kx - 12x -2k+25 + 0 \quad & | \quad k = 13 \\ &=& 6x^2+13x - 12x -26+25 \\ &=& 6x^2+x -1 \\ &=& (3x-1)(2x+1) \\\\ \mathbf{ 6x^3 + kx^2 + x - 2 } & \mathbf{=} & \mathbf{(x+2)(3x-1)(2x+1)} \\ \hline \end{array} \)

 

A:3x-1

 

laugh

heureka  Mar 13, 2018
 #2
avatar+92441 
+1

 

When the polynomial P(x) = 6x3 + kx2 + x − 2 is divided by x + 2, the remainder is 0. Which of the following is also a factor of P(x)?

 

A:3x-1

B:3x+1

C:2x-1

D:x-1

 

If x+2 is a factor then f(-2)=0

so

\(P(2) = 6*(-2)^3 + k*(-2)^2 + (-2)− 2=0\\ 6*-8 + 4k-4=0\\ 4k=52\\ k=13\\ so\\ p(x)=6x^3+13x^2+x-2\)

 

If 3x-1 is a factor then x=1/3  will be a zero I can check this with the calcuator

6*(1/3)^3+13*(1/3)^2+(1/3)-2 = 0    So  (3x-1) IS a factor

 

If 3x+1 is a facor then  f(-1/3) = 0

6*(-1/3)^3+13*(-1/3)^2+(-1/3)-2 = -1.1111111111111111    No 3x+1 is not a factor

 

If 2x-1 is a factor then f(1/2)=0

6*(1/2)^3+13*(1/2)^2+(1/2)-2 = 2.5    No 2x-1 is not a factor

 

If x-1 is a factor then f(1)=0

6*(1)^3+13*(1)^2+(1)-2 = 18     No that isn't a factor either     

 

I have determined this without any algebraic division.   laugh

Melody  Mar 13, 2018

22 Online Users

avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy