When the polynomial P(x) is divided by x − 2, the remainder is 7.
Which of the following must be true?
P(2) = 7
Example:
\(\begin{array}{|rcll|} \hline x^3 - x^2 + 2x - 1 : x- 2 &=& x^2 + x + 4 + \dfrac{7}{x - 2} \\\\ P(2) = 7 \\\\ P(2) = 2^3 - 2^2 + 2\cdot 2 - 1 &=& 7 \\ 8-4+4 - 1 &=& 7 \\ \mathbf{ 7 } & \mathbf{=} & \mathbf{7} \\ \hline \end{array}\)
When the polynomial P(x) is divided by x − 2, the remainder is 7.
Which of the following must be true?
P(2) = 7
Example:
\(\begin{array}{|rcll|} \hline x^3 - x^2 + 2x - 1 : x- 2 &=& x^2 + x + 4 + \dfrac{7}{x - 2} \\\\ P(2) = 7 \\\\ P(2) = 2^3 - 2^2 + 2\cdot 2 - 1 &=& 7 \\ 8-4+4 - 1 &=& 7 \\ \mathbf{ 7 } & \mathbf{=} & \mathbf{7} \\ \hline \end{array}\)