We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1
153
2
avatar+91 

Ok so I have this antiderivative problem I am confused about. 

 

So it is to get the antiderivative of \(\int \sqrt{x}(1-{x}^{2})dx\)

 

Please give me the steps and explanation of how you got to the answer.

 Jan 12, 2019

Best Answer 

 #1
avatar+18346 
+5

Maybe something like this?

 

x^1/2 ( 1-x^2) =   x^1/2 - x^5/2

 

Integrate       2/3 x^3/2 - 2/7 x^7/2 + C       where C = a constant

 Jan 12, 2019
 #1
avatar+18346 
+5
Best Answer

Maybe something like this?

 

x^1/2 ( 1-x^2) =   x^1/2 - x^5/2

 

Integrate       2/3 x^3/2 - 2/7 x^7/2 + C       where C = a constant

ElectricPavlov Jan 12, 2019
 #2
avatar+7499 
+2

\(\quad\displaystyle \int \sqrt x \left(1-x^2\right)\;\mathbb{d}x\\ \text{Substitute }u^2 = x\text{.}\\ =\displaystyle \int u \left(1-u^4\right) (2u) \;\mathbb{d}u\\ =2 \displaystyle \int \left(u^2 - u^6\right) \;\mathbb{d}u\\ = \dfrac{2u^3}{3} - \dfrac{2u^7}{7} + \mathbf{C}\\ = \dfrac{2x\sqrt x}{3}-\dfrac{2x^3\sqrt x}{7} + \mathbf C\)

.
 Jan 14, 2019

6 Online Users