+0  
 
0
1
107
2
avatar+91 

Ok so I have this antiderivative problem I am confused about. 

 

So it is to get the antiderivative of \(\int \sqrt{x}(1-{x}^{2})dx\)

 

Please give me the steps and explanation of how you got to the answer.

 Jan 12, 2019

Best Answer 

 #1
avatar+17332 
+5

Maybe something like this?

 

x^1/2 ( 1-x^2) =   x^1/2 - x^5/2

 

Integrate       2/3 x^3/2 - 2/7 x^7/2 + C       where C = a constant

 Jan 12, 2019
 #1
avatar+17332 
+5
Best Answer

Maybe something like this?

 

x^1/2 ( 1-x^2) =   x^1/2 - x^5/2

 

Integrate       2/3 x^3/2 - 2/7 x^7/2 + C       where C = a constant

ElectricPavlov Jan 12, 2019
 #2
avatar+7372 
+2

\(\quad\displaystyle \int \sqrt x \left(1-x^2\right)\;\mathbb{d}x\\ \text{Substitute }u^2 = x\text{.}\\ =\displaystyle \int u \left(1-u^4\right) (2u) \;\mathbb{d}u\\ =2 \displaystyle \int \left(u^2 - u^6\right) \;\mathbb{d}u\\ = \dfrac{2u^3}{3} - \dfrac{2u^7}{7} + \mathbf{C}\\ = \dfrac{2x\sqrt x}{3}-\dfrac{2x^3\sqrt x}{7} + \mathbf C\)

.
 Jan 14, 2019

22 Online Users

avatar
avatar