Where do I start on this Trigonometry verification?
(cos(x + y)) / (cos(x) + sin(y)) = (cos(x) - sin(y)) / (cos(y - x))
x = alpha
y = beta
Verify (cos(x + y)) / (cos(x) + sin(y)) = (cos(x) - sin(y)) / (cos(y - x))
step 1
\(\frac{cos(x + y)}{cos(x) + sin(y)} \stackrel{?}{=} \frac{cos(x) - sin(y)}{cos(y - x)}\)
step 2
\([cos(x + y)][cos(y - x) ]\stackrel{?}{=} [cosx - siny][cosx+ siny]\\\)
Step 3
cos is an even funtion so cos(y-x)=cos (-(y-x))
\([cos(x + y)][cos(x - y) ]\stackrel{?}{=} [cosx - siny][cosx+ siny]\\ \)
step4
\(let A=x+y\;\;\;B=x-y\\ LHS=cosAcosB\\ LHS=[(cosAcosB+sinAsinB)+(cosAcosB-sinAsinB)]*0.5\\ LHS=[(cos(A+B))+(cos(A-B))]*0.5\\ LHS=[(cos(x+y+x-y))+(cos(x+y-(x-y)))]*0.5\\ LHS=[(cos(2x))+(cos(2y))]*0.5\\ LHS=\frac{cos(2x)+cos(2y)}{2}\)
step 5
so we have
\(\frac{cos(2x)+cos(2y)}{2}\stackrel{?}{=} [cosx - siny][cosx+ siny]\\ \frac{cos(2x)+cos(2y)}{2}\stackrel{?}{=} [cos^2x - sin^2y]\\ \)
step 6
As an aside:
\(cos(2y)=cos^2y-sin^2y\\cos(2y)=1-2sin^2y\\sin^2y=\frac{1-cos(2y)}{2}\\ and\;\; likewise\;\;\\ cos^2x=\frac{1+cos2x}{2} \)
step 7
\(\frac{cos(2x)+cos(2y)}{2}\stackrel{?}{=} [cosx - siny][cosx+ siny]\\ \frac{cos(2x)+cos(2y)}{2}\stackrel{?}{=} [cos^2x -sin^2y]\\ likewise\\ \frac{cos(2x)+cos(2y)}{2}\stackrel{?}{=} [\frac{cos(2x)+1}{2} - \frac{1-cos(2y)}{2}]\\ \frac{cos(2x)+cos(2y)}{2}\stackrel{?}{=} \frac{cos(2x)+cos(2y)}{2} \\ \)
Step 8
Left hand side and right hand side are identical so the equality is verified.