+0  
 
0
707
2
avatar+12 

Which are the rules/steps to solve an*

 

Examples:

(3+4i)-(2-5i)

(8-6i)+(7+4i)

How would those be solved and do the steps differ?

Thank you.

 Dec 11, 2014

Best Answer 

 #1
avatar+23252 
+8

When simplifying complex numbers, add/subtract the real parts and add/subtract the imaginary parts -- use the same rules that you use to simplify algebraic expressions.

(3 + 4i) - (2 - 5i)  =  3 + 4i - 2 + 5i  =  3 - 2 + 4i + 5i  =  1 + 9i

(8 - 6i) + (7 + 4i)  =  8 - 6i + 7 + 4i  =  8 + 7 - 6i + 4i  =  15 - 2i

When adding/subtracting, you aren't really using the idea that i = √-1.

However, when multiplying/dividing, you will use the idea that i = √-1.

 Dec 11, 2014
 #1
avatar+23252 
+8
Best Answer

When simplifying complex numbers, add/subtract the real parts and add/subtract the imaginary parts -- use the same rules that you use to simplify algebraic expressions.

(3 + 4i) - (2 - 5i)  =  3 + 4i - 2 + 5i  =  3 - 2 + 4i + 5i  =  1 + 9i

(8 - 6i) + (7 + 4i)  =  8 - 6i + 7 + 4i  =  8 + 7 - 6i + 4i  =  15 - 2i

When adding/subtracting, you aren't really using the idea that i = √-1.

However, when multiplying/dividing, you will use the idea that i = √-1.

geno3141 Dec 11, 2014
 #2
avatar+7188 
0

I like the answer!

 Dec 11, 2014

0 Online Users