+0  
 
0
158
2
avatar+589 

Which classify the graphs of functions:

Odd Function

Even Function

Neither Even nor Odd Function

Both Even and Odd Function

 

 

jbouyer  Feb 13, 2018

Best Answer 

 #2
avatar+7324 
+3

If  f(x)  is even, that means  f(-x)  =  f(x)  for all  x  values.

If  f(x)  is odd, that means  f(-x)  =  -f(x)  for all  x  values.

 

On the first graph, for instance,   f(2)  =  4    and   f(-2)  =  -4  =  -f(2)

We can see that it is like this for all  x  values that we could pick.

So   f(-x)  =  -f(x)  for all  x  values.   This function is odd.

 

On the second graph, for instance,   f(2)  =  4  , but   f(-2)  doesn't equal positive 4 or negative 4.

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

 

On the third graph,   f(2)  =  0   but   f(-2)  =  -8

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

hectictar  Feb 14, 2018
 #1
avatar+369 
+2

1st graph:odd function

2nd graph:odd function

3rd graph:even function

 

smileysmileysmiley

qualitystreet  Feb 13, 2018
 #2
avatar+7324 
+3
Best Answer

If  f(x)  is even, that means  f(-x)  =  f(x)  for all  x  values.

If  f(x)  is odd, that means  f(-x)  =  -f(x)  for all  x  values.

 

On the first graph, for instance,   f(2)  =  4    and   f(-2)  =  -4  =  -f(2)

We can see that it is like this for all  x  values that we could pick.

So   f(-x)  =  -f(x)  for all  x  values.   This function is odd.

 

On the second graph, for instance,   f(2)  =  4  , but   f(-2)  doesn't equal positive 4 or negative 4.

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

 

On the third graph,   f(2)  =  0   but   f(-2)  =  -8

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

hectictar  Feb 14, 2018

33 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.