+0

Which classify the graphs of functions:

0
329
2

Which classify the graphs of functions:

Odd Function

Even Function

Neither Even nor Odd Function

Both Even and Odd Function   Feb 13, 2018

#2
+3

If  f(x)  is even, that means  f(-x)  =  f(x)  for all  x  values.

If  f(x)  is odd, that means  f(-x)  =  -f(x)  for all  x  values.

On the first graph, for instance,   f(2)  =  4    and   f(-2)  =  -4  =  -f(2)

We can see that it is like this for all  x  values that we could pick.

So   f(-x)  =  -f(x)  for all  x  values.   This function is odd.

On the second graph, for instance,   f(2)  =  4  , but   f(-2)  doesn't equal positive 4 or negative 4.

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

On the third graph,   f(2)  =  0   but   f(-2)  =  -8

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

Feb 14, 2018

#1
+2

1st graph:odd function

2nd graph:odd function

3rd graph:even function   Feb 13, 2018
#2
+3

If  f(x)  is even, that means  f(-x)  =  f(x)  for all  x  values.

If  f(x)  is odd, that means  f(-x)  =  -f(x)  for all  x  values.

On the first graph, for instance,   f(2)  =  4    and   f(-2)  =  -4  =  -f(2)

We can see that it is like this for all  x  values that we could pick.

So   f(-x)  =  -f(x)  for all  x  values.   This function is odd.

On the second graph, for instance,   f(2)  =  4  , but   f(-2)  doesn't equal positive 4 or negative 4.

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

On the third graph,   f(2)  =  0   but   f(-2)  =  -8

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

hectictar Feb 14, 2018