+0  
 
0
37
2
avatar+345 

Which classify the graphs of functions:

Odd Function

Even Function

Neither Even nor Odd Function

Both Even and Odd Function

 

 

jbouyer  Feb 13, 2018

Best Answer 

 #2
avatar+6362 
+2

If  f(x)  is even, that means  f(-x)  =  f(x)  for all  x  values.

If  f(x)  is odd, that means  f(-x)  =  -f(x)  for all  x  values.

 

On the first graph, for instance,   f(2)  =  4    and   f(-2)  =  -4  =  -f(2)

We can see that it is like this for all  x  values that we could pick.

So   f(-x)  =  -f(x)  for all  x  values.   This function is odd.

 

On the second graph, for instance,   f(2)  =  4  , but   f(-2)  doesn't equal positive 4 or negative 4.

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

 

On the third graph,   f(2)  =  0   but   f(-2)  =  -8

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

hectictar  Feb 14, 2018
Sort: 

2+0 Answers

 #1
avatar+149 
+2

1st graph:odd function

2nd graph:odd function

3rd graph:even function

 

smileysmileysmiley

qualitystreet  Feb 13, 2018
 #2
avatar+6362 
+2
Best Answer

If  f(x)  is even, that means  f(-x)  =  f(x)  for all  x  values.

If  f(x)  is odd, that means  f(-x)  =  -f(x)  for all  x  values.

 

On the first graph, for instance,   f(2)  =  4    and   f(-2)  =  -4  =  -f(2)

We can see that it is like this for all  x  values that we could pick.

So   f(-x)  =  -f(x)  for all  x  values.   This function is odd.

 

On the second graph, for instance,   f(2)  =  4  , but   f(-2)  doesn't equal positive 4 or negative 4.

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

 

On the third graph,   f(2)  =  0   but   f(-2)  =  -8

So   f(-x)  ≠  f(x)   and   f(-x)  ≠  -f(x)   This function is neither.

hectictar  Feb 14, 2018

10 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details