+0  
 
0
298
1
avatar

While playing snowbarding a guy is going down a hill with 120 kmh. He then ends at the flat part of the hill, and his speed decreases with 6.5m/s^2 . Calculate the minumum lenght of the flat part.

physics
Guest Jan 5, 2015

Best Answer 

 #1
avatar+26750 
+5

Use v2 = u2 + 2*a*s  where v = final speed (0 m/s), u = initial speed (120*103/3600 m/s) a = acceleration ( -6.5 m/s2) and s = distance (in metres).

 

Rearrange as: s = (v2 - u2)/(2a)

 

$${\mathtt{s}} = {\frac{\left({\mathtt{0}}{\mathtt{\,-\,}}{\left({\frac{{\mathtt{120\,000}}}{{\mathtt{3\,600}}}}\right)}^{{\mathtt{2}}}\right)}{{\mathtt{\,-\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{6.5}}\right)}} \Rightarrow {\mathtt{s}} = {\mathtt{85.470\: \!085\: \!470\: \!085\: \!470\: \!1}}$$

 

or s ≈ 85.5 m

.

Alan  Jan 6, 2015
 #1
avatar+26750 
+5
Best Answer

Use v2 = u2 + 2*a*s  where v = final speed (0 m/s), u = initial speed (120*103/3600 m/s) a = acceleration ( -6.5 m/s2) and s = distance (in metres).

 

Rearrange as: s = (v2 - u2)/(2a)

 

$${\mathtt{s}} = {\frac{\left({\mathtt{0}}{\mathtt{\,-\,}}{\left({\frac{{\mathtt{120\,000}}}{{\mathtt{3\,600}}}}\right)}^{{\mathtt{2}}}\right)}{{\mathtt{\,-\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{6.5}}\right)}} \Rightarrow {\mathtt{s}} = {\mathtt{85.470\: \!085\: \!470\: \!085\: \!470\: \!1}}$$

 

or s ≈ 85.5 m

.

Alan  Jan 6, 2015

21 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.