https://drive.google.com/file/d/1odNMgKHGyDdQpiHJkrn8Ut_HGEAG-wAP/view?usp=sharing

Its a proof that apparently seems obvious but no one gets right for some reason.

Guest Feb 2, 2021

#1**+4 **

NORT is a parallelogram | Given |

NO=OR=NT=TR | Given |

NORT is a rhombus | definition of rhombus |

OT bisects NR | in a parallelogram, diagonals bisect |

NH=HR | definition of segment bisect |

OH=OH | reflexive property of equality |

triangle NOH=triangleROH | SSS congruency theorem |

OHN=OHR | CPCTC |

OHR+OHN=180 | linear pair |

OHN+OHN=180 | substitution |

2OHN=180 | simplify |

OHN=90, OHR=90 | division property of equality |

OT perpendicular to NR | definition of perpendicular |

I changed your chart a bit to make it more specific. I myself am a geometry student as well so if anyone sees anything that's wrong, don't be afraid to tell me!

mimi997 Feb 2, 2021