I don't think I am understanding the question at all here!! Can you please advise ...thanks .
The answer is 931 meters. (I am getting 2 different readings for each point [1.42 and .438] - If I add
both answers and average then my answer would be 930 metres ?/
Question 23
cos-rule:52=a2+b2−2abcos(64∘6′−30∘45′)52=a2+b2−2abcos(63∘66′−30∘45′)52=a2+b2−2abcos(33∘21′)52=a2+b2−2abcos(33.35∘)tan(10∘12′)=haa=htan(10∘12′)a=htan(10.2∘)tan(6∘18′)=hbb=htan(6∘18′)b=htan(6.3∘)52=h2tan2(10.2∘)+h2tan2(6.3∘)−2h2cos(33.35∘)tan(10.2∘)tan(6.3∘)25=h2(1tan2(10.2∘)+1tan2(6.3∘)−2cos(33.35∘)tan(10.2∘)tan(6.3∘))25=h2(30.8887666206+82.0453112207−84.1035186173)25=28.8305592241h2h2=2528.8305592241h=5√28.8305592241h=55.36940957872h=0.93120108025 kmh=931.20108025 m
The height of the beacon above A is 931.2 meters
Question 23
cos-rule:52=a2+b2−2abcos(64∘6′−30∘45′)52=a2+b2−2abcos(63∘66′−30∘45′)52=a2+b2−2abcos(33∘21′)52=a2+b2−2abcos(33.35∘)tan(10∘12′)=haa=htan(10∘12′)a=htan(10.2∘)tan(6∘18′)=hbb=htan(6∘18′)b=htan(6.3∘)52=h2tan2(10.2∘)+h2tan2(6.3∘)−2h2cos(33.35∘)tan(10.2∘)tan(6.3∘)25=h2(1tan2(10.2∘)+1tan2(6.3∘)−2cos(33.35∘)tan(10.2∘)tan(6.3∘))25=h2(30.8887666206+82.0453112207−84.1035186173)25=28.8305592241h2h2=2528.8305592241h=5√28.8305592241h=55.36940957872h=0.93120108025 kmh=931.20108025 m
The height of the beacon above A is 931.2 meters