+0  
 
0
566
1
avatar

With how many zeros does 11^100-1 end? Explain with Binomial theorem.

Guest Jan 7, 2015

Best Answer 

 #1
avatar+17745 
+5

I believe that it will end in three zeros for this reason:

11 = 10 + 1

So:  11^100  =  (10 + 1)^100

Using the Binomial Theorem:

The last term will be:  100C0·(10^0)·(1^100)  =  1

This term will be coancell by the -1 term. So it will end with a zero.

The second last term will be:  100C1·(10^1)·(1^99)  =  (100)(10)(1)  =  1000    (three zeroes)

The third last term will be:  100C2·(10^2)·(1^98)  =  (4950)(100)(1)  =  495.000    (three zeroes)

The fourth last term will be:  100C3·(10^3)·(1^97)  =  (161700)(1000)(1)  =  161700000    (won't change the three zeroes at the end)

The fifth last term will be:  100C4·(10^4)·(1^96)  =  (3921225)(10000)(1)  =  whatever, but won't change the three zeroes at the end.

Similarly for all the other terms; the power of ten won't change the three zeroes at the end.

geno3141  Jan 7, 2015
 #1
avatar+17745 
+5
Best Answer

I believe that it will end in three zeros for this reason:

11 = 10 + 1

So:  11^100  =  (10 + 1)^100

Using the Binomial Theorem:

The last term will be:  100C0·(10^0)·(1^100)  =  1

This term will be coancell by the -1 term. So it will end with a zero.

The second last term will be:  100C1·(10^1)·(1^99)  =  (100)(10)(1)  =  1000    (three zeroes)

The third last term will be:  100C2·(10^2)·(1^98)  =  (4950)(100)(1)  =  495.000    (three zeroes)

The fourth last term will be:  100C3·(10^3)·(1^97)  =  (161700)(1000)(1)  =  161700000    (won't change the three zeroes at the end)

The fifth last term will be:  100C4·(10^4)·(1^96)  =  (3921225)(10000)(1)  =  whatever, but won't change the three zeroes at the end.

Similarly for all the other terms; the power of ten won't change the three zeroes at the end.

geno3141  Jan 7, 2015

39 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.