Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
 
+0  
 
0
1999
3
avatar

(without using l'hopital's rule) how to do you prove that:

lim x->0 (sinx)/x=1? 

lim x->0 (tan3x)/x =3?

lim x->0 (1-cosx)x? 

 Jan 30, 2015

Best Answer 

 #3
avatar+130477 
+10

For the second one, we have

tan(3x)/x  = (sin3x)/x * 1/cos3x = (3sin3x/3x) * 1/(cos 3x) 

Let 3x = Θ

And  using the fact that sinΘ/Θ = 1, and cosΘ = 1   as Θ→ 0..... we have

(3sinΘ/Θ) * 1/cosΘ = (3)(sinΘ/Θ) * 1/cosΘ =

[3(1)] / [1/1]  = 3/1  = 3  

 

    

 Jan 30, 2015
 #1
avatar+26397 
+10

(without using l'hopital's rule) how to do you prove that:

lim x->0 (sinx)/x=1 ? 

 lim

 Jan 30, 2015
 #2
avatar+26397 
+5

(without using l'hopital's rule) how to do you prove that:

lim x->0 (tan3x)/x =3 ? 

 Jan 30, 2015
 #3
avatar+130477 
+10
Best Answer

For the second one, we have

tan(3x)/x  = (sin3x)/x * 1/cos3x = (3sin3x/3x) * 1/(cos 3x) 

Let 3x = Θ

And  using the fact that sinΘ/Θ = 1, and cosΘ = 1   as Θ→ 0..... we have

(3sinΘ/Θ) * 1/cosΘ = (3)(sinΘ/Θ) * 1/cosΘ =

[3(1)] / [1/1]  = 3/1  = 3  

 

    

CPhill Jan 30, 2015

2 Online Users