+0  
 
0
308
3
avatar

(without using l'hopital's rule) how to do you prove that:

lim x->0 (sinx)/x=1? 

lim x->0 (tan3x)/x =3?

lim x->0 (1-cosx)x? 

Guest Jan 30, 2015

Best Answer 

 #3
avatar+78551 
+10

For the second one, we have

tan(3x)/x  = (sin3x)/x * 1/cos3x = (3sin3x/3x) * 1/(cos 3x) 

Let 3x = Θ

And  using the fact that sinΘ/Θ = 1, and cosΘ = 1   as Θ→ 0..... we have

(3sinΘ/Θ) * 1/cosΘ = (3)(sinΘ/Θ) * 1/cosΘ =

[3(1)] / [1/1]  = 3/1  = 3  

 

    

CPhill  Jan 30, 2015
Sort: 

3+0 Answers

 #1
avatar+18712 
+10

(without using l'hopital's rule) how to do you prove that:

lim x->0 (sinx)/x=1 ? 

$$\small{\text{
$
\boxed{ \lim\limits_{x\to0}
\left(
\dfrac{ \sin{(x)} } { x } \right)
\qquad \sin (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}\mp\dotsb
} % boxed
$
}}$\\\\\\$
\small{\text{
$
\lim\limits_{x\to0}\left(
\dfrac{ \sin{(x)} } { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
\dfrac{x}{1!}-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}\mp\dotsb
} { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
x \left( \dfrac{1}{1!}-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}\mp\dotsb \right)
} { x } \right)
$
}}$\\\\\\$
\small{\text{
$
=
\lim\limits_{x\to0}\left(
\dfrac{1}{1!}-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}\mp\dotsb \right)= \dfrac{1}{1!} = \textcolor[rgb]{1,0,0}{1}
$
}}$$

heureka  Jan 30, 2015
 #2
avatar+18712 
+5

(without using l'hopital's rule) how to do you prove that:

lim x->0 (tan3x)/x =3 ? 

$$\small{\text{
$
\boxed{ \lim\limits_{x\to0}
\left(
\dfrac{ \tan{(3x)} } { x } \right)
\qquad \tan{ (3x) } &= (3x)+\dfrac13 (3x)^3+\dfrac{2}{15}(3x)^5+\dfrac{17}{315}(3x)^7+\dotsb
} % boxed
$
}}$\\\\\\$
\small{\text{
$
\lim\limits_{x\to0}\left(
\dfrac{ \tan{(3x)} } { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
(3x)+\dfrac13 (3x)^3+\dfrac{2}{15}(3x)^5+\dfrac{17}{315}(3x)^7+\dotsb
} { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
x \left( 3+\dfrac13 3^3x^2+\dfrac{2}{15}3^5x^4+\dfrac{17}{315}3^7x^6+\dotsb \right)
} { x } \right)
$
}}$\\\\\\$
\small{\text{
$
=
\lim\limits_{x\to0}\left(
3+\dfrac13 3^3x^2+\dfrac{2}{15}3^5x^4+\dfrac{17}{315}3^7x^6+\dotsb \right)= \textcolor[rgb]{1,0,0}{3}
$
}}$$

heureka  Jan 30, 2015
 #3
avatar+78551 
+10
Best Answer

For the second one, we have

tan(3x)/x  = (sin3x)/x * 1/cos3x = (3sin3x/3x) * 1/(cos 3x) 

Let 3x = Θ

And  using the fact that sinΘ/Θ = 1, and cosΘ = 1   as Θ→ 0..... we have

(3sinΘ/Θ) * 1/cosΘ = (3)(sinΘ/Θ) * 1/cosΘ =

[3(1)] / [1/1]  = 3/1  = 3  

 

    

CPhill  Jan 30, 2015

21 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details