+0  
 
0
777
3
avatar

(without using l'hopital's rule) how to do you prove that:

lim x->0 (sinx)/x=1? 

lim x->0 (tan3x)/x =3?

lim x->0 (1-cosx)x? 

 Jan 30, 2015

Best Answer 

 #3
avatar+96035 
+10

For the second one, we have

tan(3x)/x  = (sin3x)/x * 1/cos3x = (3sin3x/3x) * 1/(cos 3x) 

Let 3x = Θ

And  using the fact that sinΘ/Θ = 1, and cosΘ = 1   as Θ→ 0..... we have

(3sinΘ/Θ) * 1/cosΘ = (3)(sinΘ/Θ) * 1/cosΘ =

[3(1)] / [1/1]  = 3/1  = 3  

 

    

 Jan 30, 2015
 #1
avatar+21244 
+10

(without using l'hopital's rule) how to do you prove that:

lim x->0 (sinx)/x=1 ? 

$$\small{\text{
$
\boxed{ \lim\limits_{x\to0}
\left(
\dfrac{ \sin{(x)} } { x } \right)
\qquad \sin (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}\mp\dotsb
} % boxed
$
}}$\\\\\\$
\small{\text{
$
\lim\limits_{x\to0}\left(
\dfrac{ \sin{(x)} } { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
\dfrac{x}{1!}-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}\mp\dotsb
} { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
x \left( \dfrac{1}{1!}-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}\mp\dotsb \right)
} { x } \right)
$
}}$\\\\\\$
\small{\text{
$
=
\lim\limits_{x\to0}\left(
\dfrac{1}{1!}-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}\mp\dotsb \right)= \dfrac{1}{1!} = \textcolor[rgb]{1,0,0}{1}
$
}}$$

.
 Jan 30, 2015
 #2
avatar+21244 
+5

(without using l'hopital's rule) how to do you prove that:

lim x->0 (tan3x)/x =3 ? 

$$\small{\text{
$
\boxed{ \lim\limits_{x\to0}
\left(
\dfrac{ \tan{(3x)} } { x } \right)
\qquad \tan{ (3x) } &= (3x)+\dfrac13 (3x)^3+\dfrac{2}{15}(3x)^5+\dfrac{17}{315}(3x)^7+\dotsb
} % boxed
$
}}$\\\\\\$
\small{\text{
$
\lim\limits_{x\to0}\left(
\dfrac{ \tan{(3x)} } { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
(3x)+\dfrac13 (3x)^3+\dfrac{2}{15}(3x)^5+\dfrac{17}{315}(3x)^7+\dotsb
} { x } \right)
=
\lim\limits_{x\to0}\left(
\dfrac{
x \left( 3+\dfrac13 3^3x^2+\dfrac{2}{15}3^5x^4+\dfrac{17}{315}3^7x^6+\dotsb \right)
} { x } \right)
$
}}$\\\\\\$
\small{\text{
$
=
\lim\limits_{x\to0}\left(
3+\dfrac13 3^3x^2+\dfrac{2}{15}3^5x^4+\dfrac{17}{315}3^7x^6+\dotsb \right)= \textcolor[rgb]{1,0,0}{3}
$
}}$$

.
 Jan 30, 2015
 #3
avatar+96035 
+10
Best Answer

For the second one, we have

tan(3x)/x  = (sin3x)/x * 1/cos3x = (3sin3x/3x) * 1/(cos 3x) 

Let 3x = Θ

And  using the fact that sinΘ/Θ = 1, and cosΘ = 1   as Θ→ 0..... we have

(3sinΘ/Θ) * 1/cosΘ = (3)(sinΘ/Θ) * 1/cosΘ =

[3(1)] / [1/1]  = 3/1  = 3  

 

    

CPhill Jan 30, 2015

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.