+0  
 
0
304
2
avatar

4x^2-y^2+2y-1=0 ?? is two straight line at Cartesian level ... can anyone hepl me ?

Guest May 15, 2017
 #1
avatar+92781 
+2

This is an interesting question :)

 

4x^2-y^2+2y-1=0 ?? is two straight line at Cartesian level ... can anyone hepl me ?

 

\(4x^2-y^2+2y-1=0 \\ 4x^2-(y^2-2y+1)=0 \\ 4x^2-(y-1)^2=0 \\ [2x-(y-1)][2x+(y-1)]=0\\ so\\ 2x-(y-1)=0 \qquad or \qquad 2x+(y-1)=0\\ 2x-y+1=0 \qquad \quad or \qquad 2x+y-1=0\\ y=2x+1 \qquad \qquad or \qquad y=-2x+1\\ \)

 

check:

https://www.desmos.com/calculator/l2dzckj7ta

Melody  May 15, 2017
 #2
avatar+19632 
+2

4x^2-y^2+2y-1=0 ?? is two straight line at Cartesian level

 

\(\begin{array}{|rcll|} \hline 4x^2-y^2+2y-1 &=& 0 \\ 4x^2-(y^2-2y+1) &=& 0 \quad & | \quad y^2-2y+1 = (y-1)^2 \\ 4x^2-(y-1)^2 &=& 0 \\ (y-1)^2 &=& 4x^2 \quad & | \quad \text{square root both sides} \\ y-1 &=& \pm 2x \\ y &=& \pm 2x + 1 \\\\ \text{Line 1 }: y &=& 2x + 1 \\ \text{Line 2 }: y &=& -2x + 1 \\ \hline \end{array}\)

 

laugh

heureka  May 15, 2017
edited by heureka  May 15, 2017

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.