#1**+1 **

Simplifying these terms requires one to place them in a common denominator. To do this, we must find the LCD, or lowest common denominator of the terms. In this case, \(b^3\) is the LCD.

Let's worry about each term individually. Let's convert \(\frac{1}{b}\) so that its denominator is \(b^3\):

\(\frac{1}{b}*\frac{b^2}{b^2}\) | Multiply both the numerator and denominator by \(b^2\) |

\(\frac{b^2}{b^3}\) | This term has a denominator of b^3 now. |

Let's do the other term now:

\(\frac{1}{b^2}*\frac{b}{b}\) | Multiply the numerator and denominator by \(b\) |

\(\frac{b}{b^3}\) | |

Of course the other term is converted already in its desired form, so we need not worry about the third one. Let's add the fractions together now:

\(\frac{b^2}{b^3}+\frac{b}{b^3}+\frac{1}{b^3}=\frac{b^2+b+1}{b^3}\)

This answer cannot be simplified further.

TheXSquaredFactor
Jun 6, 2017

#1**+1 **

Best Answer

Simplifying these terms requires one to place them in a common denominator. To do this, we must find the LCD, or lowest common denominator of the terms. In this case, \(b^3\) is the LCD.

Let's worry about each term individually. Let's convert \(\frac{1}{b}\) so that its denominator is \(b^3\):

\(\frac{1}{b}*\frac{b^2}{b^2}\) | Multiply both the numerator and denominator by \(b^2\) |

\(\frac{b^2}{b^3}\) | This term has a denominator of b^3 now. |

Let's do the other term now:

\(\frac{1}{b^2}*\frac{b}{b}\) | Multiply the numerator and denominator by \(b\) |

\(\frac{b}{b^3}\) | |

Of course the other term is converted already in its desired form, so we need not worry about the third one. Let's add the fractions together now:

\(\frac{b^2}{b^3}+\frac{b}{b^3}+\frac{1}{b^3}=\frac{b^2+b+1}{b^3}\)

This answer cannot be simplified further.

TheXSquaredFactor
Jun 6, 2017