+0  
 
0
305
2
avatar

Write the expoenential growth function with b=8. and find its inverse? 

Guest Apr 22, 2017
 #1
avatar+90056 
+1

 

I assume that we have this ??

 

y  = a(b)^x

 

y = a(8)^x       divide both sides by a

 

(y / a)  =  (8)^x         take the log of both sides

 

log( y /a )  = log 8^x      and we can write

 

log ( y / a)   =  x * log 8     divide both sides by log 8

 

log ( y / a)  / log 8   = x       swap x and y

 

log ( x / a) / log 8  =  y        and for y,  write f-1 ( x)

 

f-1(x)  =   log ( x / a) / log 8

 

 

 

cool cool cool

CPhill  Apr 22, 2017
 #2
avatar
+1

\(y = a8^{x} \\ \frac{y}{a} = 8^{x} \\ (\frac{y}{a})^{\frac{1}{x}} = (8^{x})^{\frac{1}{x}} \\ (\frac{y}{a})^{\frac{1}{x}} = 8 \\ \frac{1}{x}ln(\frac{y}{a}) = ln(8) \\ \frac{1}{x}= \frac{ln(8)}{ln(\frac{y}{a})} \\ x = \frac{ln(\frac{y}{a})}{ln(8)}\)

Guest Apr 22, 2017

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.