+0  
 
0
116
2
avatar

Write the expoenential growth function with b=8. and find its inverse? 

Guest Apr 22, 2017
Sort: 

2+0 Answers

 #1
avatar+75343 
+1

 

I assume that we have this ??

 

y  = a(b)^x

 

y = a(8)^x       divide both sides by a

 

(y / a)  =  (8)^x         take the log of both sides

 

log( y /a )  = log 8^x      and we can write

 

log ( y / a)   =  x * log 8     divide both sides by log 8

 

log ( y / a)  / log 8   = x       swap x and y

 

log ( x / a) / log 8  =  y        and for y,  write f-1 ( x)

 

f-1(x)  =   log ( x / a) / log 8

 

 

 

cool cool cool

CPhill  Apr 22, 2017
 #2
avatar
+1

\(y = a8^{x} \\ \frac{y}{a} = 8^{x} \\ (\frac{y}{a})^{\frac{1}{x}} = (8^{x})^{\frac{1}{x}} \\ (\frac{y}{a})^{\frac{1}{x}} = 8 \\ \frac{1}{x}ln(\frac{y}{a}) = ln(8) \\ \frac{1}{x}= \frac{ln(8)}{ln(\frac{y}{a})} \\ x = \frac{ln(\frac{y}{a})}{ln(8)}\)

Guest Apr 22, 2017

22 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details