Write the following expression without using the factorial symbol.
(n - 4)! / 3! (n - 2)!
Write the following expression without using the factorial symbol.
(n - 4)! / 3! (n - 2)!
\(\begin{array}{|rcll|} \hline && \dfrac{(n - 4)!} {3! (n - 2)!} \quad & | \quad (n - 2)! = (n-4)!(n-3)(n-2) \\\\ &=& \dfrac{(n - 4)!} {3! (n-4)!(n-3)(n-2) } \\\\ &=& \dfrac{1} {3! (n-3)(n-2) } \quad & | \quad 3! = 6 \\\\ &=& \dfrac{1} {6(n-3)(n-2) } \\ \hline \end{array} \)
Write the following expression without using the factorial symbol.
(n - 4)! / 3! (n - 2)!
\(\begin{array}{|rcll|} \hline && \dfrac{(n - 4)!} {3! (n - 2)!} \quad & | \quad (n - 2)! = (n-4)!(n-3)(n-2) \\\\ &=& \dfrac{(n - 4)!} {3! (n-4)!(n-3)(n-2) } \\\\ &=& \dfrac{1} {3! (n-3)(n-2) } \quad & | \quad 3! = 6 \\\\ &=& \dfrac{1} {6(n-3)(n-2) } \\ \hline \end{array} \)