Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
+3
1467
3
avatar

Write the product as a sum: 6sin(47y)cos(21y) =

 May 16, 2015

Best Answer 

 #1
avatar+584 
+13

sin(x+y)=sinx*cosy+cosx*siny

sin(x-y)=sinx*cosy-cosx*siny

so, sin(x+y)+sin(x-y)=sinx*cosy+cosx*siny+sinx*cosy-cosx*siny=2sinx*cosy

    sinx*cosy=1/2[sin(x+y)+sin(x-y)]

orginal qustion=6*sin(47y)*cos(21y)=(1/2)*6*[sin(47y+21y)+sin(47y-21y)=3*[sin68y+sin26y]

                     =3sin68y+3sin26y

 May 16, 2015
 #1
avatar+584 
+13
Best Answer

sin(x+y)=sinx*cosy+cosx*siny

sin(x-y)=sinx*cosy-cosx*siny

so, sin(x+y)+sin(x-y)=sinx*cosy+cosx*siny+sinx*cosy-cosx*siny=2sinx*cosy

    sinx*cosy=1/2[sin(x+y)+sin(x-y)]

orginal qustion=6*sin(47y)*cos(21y)=(1/2)*6*[sin(47y+21y)+sin(47y-21y)=3*[sin68y+sin26y]

                     =3sin68y+3sin26y

fiora May 16, 2015
 #2
avatar+130477 
0

Very nicely done,  fiora.......!!!  Impressive....

 

 

 May 16, 2015
 #3
avatar+26397 
+10

Write the product as a sum: 6sin(47y)cos(21y) = ?

 

\boxed{ \small{\text{ Formula: $ \begin{array}{rcl} \sin u+\sin v=2\sin \frac{u+v}{2}\cos \frac{u-v}{2} \end{array} $}} }

47y=u+v221y=uv2u=u+v2+uv2=47y+21y=68yv=u+v2uv2=47y21y=26y

 

sinu+sinv=2sinu+v2cosuv2sin(68y)+sin(26y)=2sin(47y)cos(21y)|33sin(68y)+3sin(26y)=6sin(47y)cos(21y)

 May 16, 2015

1 Online Users