+0  
 
+3
288
3
avatar

Write the product as a sum: 6sin(47y)cos(21y) =

Guest May 16, 2015

Best Answer 

 #1
avatar+519 
+13

sin(x+y)=sinx*cosy+cosx*siny

sin(x-y)=sinx*cosy-cosx*siny

so, sin(x+y)+sin(x-y)=sinx*cosy+cosx*siny+sinx*cosy-cosx*siny=2sinx*cosy

    sinx*cosy=1/2[sin(x+y)+sin(x-y)]

orginal qustion=6*sin(47y)*cos(21y)=(1/2)*6*[sin(47y+21y)+sin(47y-21y)=3*[sin68y+sin26y]

                     =3sin68y+3sin26y

fiora  May 16, 2015
Sort: 

3+0 Answers

 #1
avatar+519 
+13
Best Answer

sin(x+y)=sinx*cosy+cosx*siny

sin(x-y)=sinx*cosy-cosx*siny

so, sin(x+y)+sin(x-y)=sinx*cosy+cosx*siny+sinx*cosy-cosx*siny=2sinx*cosy

    sinx*cosy=1/2[sin(x+y)+sin(x-y)]

orginal qustion=6*sin(47y)*cos(21y)=(1/2)*6*[sin(47y+21y)+sin(47y-21y)=3*[sin68y+sin26y]

                     =3sin68y+3sin26y

fiora  May 16, 2015
 #2
avatar+78577 
0

Very nicely done,  fiora.......!!!  Impressive....

 

 

CPhill  May 16, 2015
 #3
avatar+18712 
+10

Write the product as a sum: 6sin(47y)cos(21y) = ?

 

$$\boxed{
\small{\text{
Formula:
$
\begin{array}{rcl}
\sin u+\sin v=2\sin \frac{u+v}{2}\cos \frac{u-v}{2}
\end{array}
$}}
}$$

$$\small{\text{$
\begin{array}{rcl}
47y = \dfrac{u+v}{2} \qquad 21y=\dfrac{u-v}{2}\\\\
u=\dfrac{u+v}{2}+\dfrac{u-v}{2}=47y+21y=68y\\\\
v=\dfrac{u+v}{2}-\dfrac{u-v}{2}=47y-21y=26y\\\\
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{rcl}
\sin u+\sin v&=&2\sin \frac{u+v}{2}\cos \frac{u-v}{2}\\\\
\sin {(68y)}+\sin {(26y)} &=&2\sin{( 47y )}\cos{( 21y )} \quad | \quad \cdot 3 \\\\
3\sin {(68y)}+3\sin {(26y)} &=&6\sin{( 47y )}\cos{( 21y )}
\end{array}
$}}$$

heureka  May 16, 2015

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details