sin(x+y)=sinx*cosy+cosx*siny
sin(x-y)=sinx*cosy-cosx*siny
so, sin(x+y)+sin(x-y)=sinx*cosy+cosx*siny+sinx*cosy-cosx*siny=2sinx*cosy
sinx*cosy=1/2[sin(x+y)+sin(x-y)]
orginal qustion=6*sin(47y)*cos(21y)=(1/2)*6*[sin(47y+21y)+sin(47y-21y)=3*[sin68y+sin26y]
=3sin68y+3sin26y
Write the product as a sum: 6sin(47y)cos(21y) = ?
\boxed{ \small{\text{ Formula: $ \begin{array}{rcl} \sin u+\sin v=2\sin \frac{u+v}{2}\cos \frac{u-v}{2} \end{array} $}} }
47y=u+v221y=u−v2u=u+v2+u−v2=47y+21y=68yv=u+v2−u−v2=47y−21y=26y
sinu+sinv=2sinu+v2cosu−v2sin(68y)+sin(26y)=2sin(47y)cos(21y)|⋅33sin(68y)+3sin(26y)=6sin(47y)cos(21y)