+0  
 
0
1521
1
avatar

Write the three cube roots of -27 in rectangular coordinates. Give exact answers.

Guest May 28, 2014

Best Answer 

 #1
avatar+1792 
+14

$$\sqrt[3]{-27}=\sqrt[3]{27}\sqrt[3]{-1}=3\sqrt[3]{-1}$$

$$\sqrt[3]{-1}=\sqrt[3]{e^{\imath \pi}}=\sqrt[3]{e^{\imath (\pi +2k \pi)}}~~k\in \mathbb{Z}$$

and we pick values corresponding to k=0,1,2

$$\sqrt[3]{-1}=e^{\imath \pi/3}$$

$$\sqrt[3]{-1}=e^{\frac{\imath(\pi + 2\pi)}{3}}=e^{\imath\pi}=-1$$

$$\sqrt[3]{-1}=e^{\frac{\imath(\pi + 4\pi)}{3}}=e^{\imath 5\pi/3}=e^{-\imath \pi/3}$$

so

$$\sqrt[3]{-27}=-3, ~3e^{\imath \pi/3}, ~3e^{-\imath \pi/3}$$

Oh I see it wants the answers in rectangular form

To do this, convert the complex exponential into rectangular form as follows

$$e^{\imath x}=\cos(x)+\imath \sin(x)$$

$$-3 = -3 \\$$

$$3e^{\imath \pi/3} = 3(1/2 + \imath \sqrt{3}/2)=3/2+\imath 3\sqrt{3}/3$$

$$3e^{-\imath \pi/3} = 3(1/2 - \imath \sqrt{3}/2)=3/2-\imath 3\sqrt{3}/3$$

Rom  May 28, 2014
 #1
avatar+1792 
+14
Best Answer

$$\sqrt[3]{-27}=\sqrt[3]{27}\sqrt[3]{-1}=3\sqrt[3]{-1}$$

$$\sqrt[3]{-1}=\sqrt[3]{e^{\imath \pi}}=\sqrt[3]{e^{\imath (\pi +2k \pi)}}~~k\in \mathbb{Z}$$

and we pick values corresponding to k=0,1,2

$$\sqrt[3]{-1}=e^{\imath \pi/3}$$

$$\sqrt[3]{-1}=e^{\frac{\imath(\pi + 2\pi)}{3}}=e^{\imath\pi}=-1$$

$$\sqrt[3]{-1}=e^{\frac{\imath(\pi + 4\pi)}{3}}=e^{\imath 5\pi/3}=e^{-\imath \pi/3}$$

so

$$\sqrt[3]{-27}=-3, ~3e^{\imath \pi/3}, ~3e^{-\imath \pi/3}$$

Oh I see it wants the answers in rectangular form

To do this, convert the complex exponential into rectangular form as follows

$$e^{\imath x}=\cos(x)+\imath \sin(x)$$

$$-3 = -3 \\$$

$$3e^{\imath \pi/3} = 3(1/2 + \imath \sqrt{3}/2)=3/2+\imath 3\sqrt{3}/3$$

$$3e^{-\imath \pi/3} = 3(1/2 - \imath \sqrt{3}/2)=3/2-\imath 3\sqrt{3}/3$$

Rom  May 28, 2014

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.