Note that arcsin x = some angle ... and the arccos x will be the angle that is complementary to this angle
To see this....suppose that x = 1/2....then arcsin (1/2) = 30°
And arccos (1/2) = 60°
So arcsin x + arccos x = 30° + 60° = 90°
And sin (90°) = 1
sin(arcsin x + arccos x)
i)
\(\begin{array}{lrcll} & \cos{(\varphi)} &=& x \\ \text{or}& \quad \varphi &=& \arccos{(x)}\\ \end{array} \)
ii)
\(\begin{array}{lrclcl} &\sin{(90^\circ-\varphi)} &=& \cos{(\varphi)} &=& x \\ \text{or}& \quad 90^\circ-\varphi && &=& \arcsin{(x)}\\ \end{array} \)
iii)
\(\begin{array}{rcll} && \sin\Big(\arcsin(x)+\arccos(x)\Big) \\ &=& \sin(90^\circ-\varphi+\varphi) \\ &=& \sin(90^\circ)\\ &=& 1\\ \end{array}\)