+0  
 
0
360
3
avatar

((x-2)/(2x)+(1)/(x+2))/((3)/(2)-(6)/(x^(2)+2x))

 

How would I solve this?

Please give step by step directions on how to solve

Guest Oct 17, 2017
 #1
avatar+20150 
+2

How would I solve this?

((x-2)/(2x)+(1)/(x+2))/((3)/(2)-(6)/(x^(2)+2x))

 

\(\begin{array}{|rcll|} \hline && \mathbf{\dfrac{ \dfrac{x-2}{2x} + \dfrac{1}{x+2} } { \dfrac{3}{2}- \dfrac{6} {x^{2}+2x} } } \quad & | \quad x^{2}+2x = x(x+2) \\\\ &=& \dfrac{ \dfrac{x-2}{2x} + \dfrac{1}{x+2} } { \dfrac{3}{2}- \dfrac{6} {x(x+2)} } \\\\ &=& \dfrac{ \dfrac{(x-2)(x+2) + 1\cdot 2x}{2x(x+2)} } { \dfrac{3x(x+2)-2\cdot 6}{2x(x+2)} } \\\\ &=& \dfrac{\left[~(x-2)(x+2) + 1\cdot 2x ~\right]}{2x(x+2)} \cdot \dfrac{2x(x+2)} {\left[~ 3x(x+2)-2\cdot 6 ~\right] } \\\\ &=& \dfrac{(x-2)(x+2) + 1\cdot 2x} {3x(x+2)-2\cdot 6} \\\\ &=& \dfrac{(x-2)(x+2) + 2x} {3x(x+2)-12} \\\\ &=& \dfrac{x^2-4 + 2x } {3x^2+6x-12} \\\\ &=& \dfrac{1}{3} \cdot \dfrac{\left(x^2+2x-4\right)} {\left(x^2+2x-4\right)} \\\\ &\mathbf{=}& \mathbf{ \dfrac{1}{3}} \\ \hline \end{array}\)

 

laugh

heureka  Oct 17, 2017
 #2
avatar
0

i dont understand the last two steps can u pls explain

 

Guest Oct 18, 2017
 #3
avatar+20150 
+3

i dont understand the last two steps can u pls explain

 

 

\(\begin{array}{|rcll|} \hline && \dfrac{{\color{red}(x-2)(x+2)} + 2x} {3x(x+2)-12} \quad & | \quad {\color{red}(x-2)(x+2)} = x^2 + 2x-2x- 2\cdot 2 = x^2 -4 \\\\ &=& \dfrac{x^2-4 + 2x } {3x^2+6x-12} \\\\ &=& \dfrac{x^2-4 + 2x } {{\color{red}3}x^2+2\cdot {\color{red}3}\cdot x-({\color{red}3}\cdot 4)} \\\\ &=& \dfrac{x^2-4 + 2x } { {\color{red}3}\cdot ( x^2+2\cdot x-( 4))} \\\\ &=& \dfrac{x^2-4 + 2x } { {\color{red}3}\cdot ( x^2-4+2x)} \\\\ &=& \dfrac{(x^2-4 + 2x) } { {\color{red}3}\cdot ( x^2-4+2x)} \quad &| \quad \dfrac{(x^2-4 + 2x) } { ( x^2-4+2x)} = 1 \\\\ &=& \dfrac{1} { {\color{red}3}} \cdot 1 \\\\ &=& \dfrac{1} { {\color{red}3}} \\\\ \hline \end{array}\)

 

 

laugh

heureka  Oct 18, 2017

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.