+0  
 
0
49
6
avatar

x^a=y^b=k and x^c=y^d=t, then which of the following is true. 

 

a) ac=bd

b) ad=bc

c) a/d=c/b

d) a^c=b^d

e) a+c=b+d

Guest Nov 5, 2017
Sort: 

6+0 Answers

 #1
avatar+5254 
+1

x^a  =  y^b

 

(x^a)^n  =  (y^b)^n

 

x^(an)  =  y^(bn)

 

Let's say

 

c  =  an     and     d = bn

 

c/a  =  n     and     d/b  =  n

 

c/a  =  d/b     cross multiply

 

ad  =  bc

hectictar  Nov 5, 2017
 #2
avatar+78753 
+2

x^a  = k   → log x  =  log k / a

y^b  = k   → log y  =  log k / b

x^c  = t   

y^d  = t

 

So

 

k * t   =  x^a * x^c =  y^b * y^d  =  x^(a + c) = y^(b + d)

 

So

 

(a + c) log x  =  ( b + d) log y

 

(a + c) ( log k / a)  =  (b + d)( log k / b)

 

(a + c) b  =  ( b + d) a

 

ab + bc  =   ab + ad

 

[ bc   =  ad ]  →  [ ad   =  bc ]

 

 

 

cool cool cool

CPhill  Nov 5, 2017
 #3
avatar+78753 
+1

Sorry, hectictar....I didn't see you working on this at the same time !!!

 

Different procedures....same answer  !!!!

 

 

 

cool cool cool

CPhill  Nov 5, 2017
 #4
avatar+5254 
+1

I'm glad you answered it too and got the same thing....I was a little bit unsure of my answer!!!

hectictar  Nov 5, 2017
 #5
avatar+78753 
+1

Maybe we're both wrong, but think that we're correct.....LOL!!!!!

 

 

cool cool cool

CPhill  Nov 5, 2017
 #6
avatar+18715 
+1

x^a=y^b=k and x^c=y^d=t, then which of the following is true.

 

a) ac=bd

b) ad=bc

c) a/d=c/b

d) a^c=b^d

e) a+c=b+d

 

\(x^a=y^b \\ x^c=y^d\)

 

\(\begin{array}{|rcll|} \hline x^a &=& y^b \quad & | \quad \text{exponentiate both sides with } \frac{c}{a} \\ \displaystyle x^{a\cdot\frac{c}{a}} &=& \displaystyle y^{b\cdot\frac{c}{a}} \\ x^{c} &=& \displaystyle y^{b\cdot\frac{c}{a}}\quad & | \quad x^{c} = y^d \\ y^d &=& \displaystyle y^{b\cdot\frac{c}{a}} \\ \Rightarrow d &=&\displaystyle b\cdot\frac{c}{a} \\ \mathbf{ad} & \mathbf{=} & \mathbf{bc} \\ \hline \end{array} \)

 

laugh

heureka  Nov 7, 2017

11 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details