+0  
 
0
839
6
avatar+103 

$${\mathtt{12}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{x}}}{{\mathtt{6}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{1}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{5}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{x}}}{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{4}}}{{\mathtt{1}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{10}} = {\mathtt{6}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{x}}}{{\mathtt{1}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{35}}}{{\mathtt{1}}}}\right)$$

 

 

through calculater the answer is 60 yet no way of solution please help 

math algebra
 Aug 25, 2014

Best Answer 

 #2
avatar+3454 
+8

I see you've answered Alan, but I had to post this because I put like 10 minutes into this LaTeX. :)

 

$$\begin{array}{l}
12(\frac{x}{6}-\frac{5}{1})+5(\frac{x}{5}+\frac{4}{1})+10=6(\frac{x}{1}-\frac{35}{1})\\\\\mbox{Distribute the 12, 5, and 6 into their parentheses}\\\\
(12\times\frac{x}{6})-(12\times \frac{5}{1})+ (5\times \frac{x}{5})+(5\times \frac{4}{1})+10=(6\times \frac{x}{1})-(6\times\frac{35}{1})\\\\
(\frac{12x}{6}) - (\frac{60}{1}) + (\frac{5x}{5}) + (\frac{20}{1}) + 10 =\frac{6x}{1} - \frac{210}{1}\\\\
(\frac{2x}{1}) - (\frac{60}{1}) + (\frac{x}{1}) + (\frac{20}{1}) + 10 =\frac{6x}{1} - \frac{210}{1}\\\\
\mathbf{2x} -60 + \mathbf{x} +20 + 10 =6x -210\\\\
3x \mathbf{- 60} \mathbf{+ 20} \mathbf{+ 10} = 6x - 210\\\\
3x-30 = 6x - 210\\\\
-30= 3x - 210\\\\
180 = 3x\\\\
60 = x\\\\
x = 60
\end{array}$$

 Aug 25, 2014
 #1
avatar+33657 
+8

Multiplying through to get rid of the brackets this becomes:

2x - 60 + x + 20 + 10 = 6x - 210

or:  3x - 30 = 6x - 210

Add 210 to both sides:

3x + 180 = 6x

Subtract 3x from both sides:

180 = 3x

Divide both sides by 3:

x = 60

 Aug 25, 2014
 #2
avatar+3454 
+8
Best Answer

I see you've answered Alan, but I had to post this because I put like 10 minutes into this LaTeX. :)

 

$$\begin{array}{l}
12(\frac{x}{6}-\frac{5}{1})+5(\frac{x}{5}+\frac{4}{1})+10=6(\frac{x}{1}-\frac{35}{1})\\\\\mbox{Distribute the 12, 5, and 6 into their parentheses}\\\\
(12\times\frac{x}{6})-(12\times \frac{5}{1})+ (5\times \frac{x}{5})+(5\times \frac{4}{1})+10=(6\times \frac{x}{1})-(6\times\frac{35}{1})\\\\
(\frac{12x}{6}) - (\frac{60}{1}) + (\frac{5x}{5}) + (\frac{20}{1}) + 10 =\frac{6x}{1} - \frac{210}{1}\\\\
(\frac{2x}{1}) - (\frac{60}{1}) + (\frac{x}{1}) + (\frac{20}{1}) + 10 =\frac{6x}{1} - \frac{210}{1}\\\\
\mathbf{2x} -60 + \mathbf{x} +20 + 10 =6x -210\\\\
3x \mathbf{- 60} \mathbf{+ 20} \mathbf{+ 10} = 6x - 210\\\\
3x-30 = 6x - 210\\\\
-30= 3x - 210\\\\
180 = 3x\\\\
60 = x\\\\
x = 60
\end{array}$$

NinjaDevo Aug 25, 2014
 #3
avatar+33657 
0

No harm in having more than one reply ND!

 Aug 25, 2014
 #4
avatar+3454 
0

That's true. It's always good to have a few consistent answers.

 Aug 25, 2014
 #5
avatar
+5

You did all of that in ten minutes?

That is much more impressive than solving the equation!

 Aug 25, 2014
 #6
avatar+118667 
0

Two exellent answers - ( Don't you just hate it when that happens Ninja  )

Thanks guys 

 Aug 26, 2014

1 Online Users

avatar