Input: x|x|=2x+1
Intepretation: x|x|=2x+1
Rewrite into alternative form:
x√x2=2x+1
Simplify the square:
x2=2x+1
Move the terms to the left:
x2−2x−1=0
This function doesn't look like that it is factorizable, applying formulaic solution:
For ax2+bx+c=0, x=−b±√b2−4ac2a,
Plug a=1, b=−2, c=−1
x=2±√4+42
=2±√82
=2±2√22
=1±√2
x=1+√2 or 1−√2
x|x|=2x+1
The lines are absolute value
x|x|=2x+1|square both sidesx2⋅|x|2=(2x+1)2||x|2=x2x2⋅x2=(2x+1)2x4=4x2+4x+1x4−4x2+4x+1=0
solutions of x4−4x2+4x+1=0
see: http://www.wolframalpha.com/input/?i=x%5E4-4x%5E2-4x-1%3D0
x1=−1x2=1−√2x3=1+√2
Solutions of x|x|=2x+1:
x1=−1(−1)⋅|−1|?=2⋅(−1)+1(−1)⋅1?=−2+1−1!=−1 ✓
x = -1 is a solution
x2=1−√2(1−√2)⋅|1−√2|?=2⋅(1−√2)+1(−0.41421356237)⋅|−0.41421356237|?=2⋅(−0.41421356237)+1(−0.41421356237)⋅0.41421356237?=−0.82842712475+1−0.17157287525≠0.17157287525
x=1−√2 is not a solution
x2=1+√2(1+√2)⋅|1+√2|?=2⋅(1+√2)+1(2.41421356237)⋅|2.41421356237|?=2⋅(2.41421356237)+12.41421356237⋅2.41421356237?=4.82842712475+15.82842712475!=5.82842712475 ✓
x=1+√2 is a solution
x|x|=2x+1
The lines are absolute value
I'd do it in 2 parts.
If x is positive then
x2=2x+1x2−2x−1=0x=2±√4−−42x=2±√82x=2±2√22x=1±√2Since x is positive the only answer is x=1+√2
If x is negative then
−x2=2x+1−x2−2x−1=0x=2±√4−42x=1but since x is negative there is no solution
So the only solution is x=1+√2