Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
943
3
avatar

x|x|=2x+1 

The lines are absolute value

 Aug 18, 2017
 #1
avatar+178 
+1

Input: x|x|=2x+1

Intepretation: x|x|=2x+1

Rewrite into alternative form:

xx2=2x+1

Simplify the square:

x2=2x+1

Move the terms to the left:

x22x1=0

This function doesn't look like that it is factorizable, applying formulaic solution:

For ax2+bx+c=0, x=b±b24ac2a,

Plug a=1, b=2, c=1

x=2±4+42

=2±82

=2±222

=1±2

x=1+2 or 12

 Aug 18, 2017
edited by Jeffes02  Aug 18, 2017
edited by Jeffes02  Aug 18, 2017
 #2
avatar+26396 
+3

x|x|=2x+1 

The lines are absolute value

 

x|x|=2x+1|square both sidesx2|x|2=(2x+1)2||x|2=x2x2x2=(2x+1)2x4=4x2+4x+1x44x2+4x+1=0

 

solutions of x44x2+4x+1=0

see: http://www.wolframalpha.com/input/?i=x%5E4-4x%5E2-4x-1%3D0

x1=1x2=12x3=1+2

 

Solutions of x|x|=2x+1:

x1=1(1)|1|?=2(1)+1(1)1?=2+11!=1 

x = -1 is a solution

 

x2=12(12)|12|?=2(12)+1(0.41421356237)|0.41421356237|?=2(0.41421356237)+1(0.41421356237)0.41421356237?=0.82842712475+10.171572875250.17157287525

x=12 is not a solution

 

x2=1+2(1+2)|1+2|?=2(1+2)+1(2.41421356237)|2.41421356237|?=2(2.41421356237)+12.414213562372.41421356237?=4.82842712475+15.82842712475!=5.82842712475 

x=1+2 is a solution

 

laugh

 Aug 18, 2017
 #3
avatar+118703 
+1

x|x|=2x+1 

The lines are absolute value

 

I'd do it in 2 parts.

 

If x is positive then

x2=2x+1x22x1=0x=2±442x=2±82x=2±222x=1±2Since x is positive the only answer is x=1+2

 

 

If x is negative then

x2=2x+1x22x1=0x=2±442x=1but since x is negative there is no solution 

 

So the only solution is x=1+2

 Aug 18, 2017

2 Online Users

avatar