If x,y , and z are positive real numbers satisfying:
log(x/y) = a
log(y/z) = 15
log(z/x) = -1
Find a.
If x,y , and z are positive real numbers satisfying:
log(x/y) = a
log(y/z) = 15
log(z/x) = -1
Hello Guest!
\(log(\frac{x}{y})=a\\ log(\frac{y}{z})=15\\ log(\frac{z}{x})=-1\)
\(log(x)-log(y)=a\\ log(y)-log(z)=15\\ log(z)-log(x)=-1\)
\(X-Y=a\\ Y-Z=15\\ Z-X=-1 \)
\(Z=X-1\)
\(Y=X-a=15-Z\\ a=X+Z-15\\ a=X+X-1-15\\a=2X-16\)
\(a=log(x^2)-16\)
!