First we solve the equation for y
$$\begin{array}{lcl}
x - y = x + y + 17\\
-y = y + 17\\
-2y = 17\\
y = -\frac{17}{2}
\end{array}$$
We have 2 possible situations for x
either
$$\begin{array}{lcl}
y = -\frac{17}{2}\\
\end{array}$$
and we find
$$\begin{array}{lcl}
x - y = x + y + 17\\
x + \frac{17}{2} = x - \frac{17}{2} + 17\\
x = x - 17 + 17\\
x = x
\end{array}$$
Which means x can be any number,
or
$$\begin{array}{lcl}
y \neq -\frac{17}{2}\\
\end{array}$$
and we find no value for x for which the equation holds.
Reinout
First we solve the equation for y
$$\begin{array}{lcl}
x - y = x + y + 17\\
-y = y + 17\\
-2y = 17\\
y = -\frac{17}{2}
\end{array}$$
We have 2 possible situations for x
either
$$\begin{array}{lcl}
y = -\frac{17}{2}\\
\end{array}$$
and we find
$$\begin{array}{lcl}
x - y = x + y + 17\\
x + \frac{17}{2} = x - \frac{17}{2} + 17\\
x = x - 17 + 17\\
x = x
\end{array}$$
Which means x can be any number,
or
$$\begin{array}{lcl}
y \neq -\frac{17}{2}\\
\end{array}$$
and we find no value for x for which the equation holds.
Reinout