+0  
 
+5
673
2
avatar+10 

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

Pittassuaq  Dec 10, 2015

Best Answer 

 #2
avatar+93654 
+10

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

 

I did that the super long way ..

 

\(y= 7x-\frac{4}{\sqrt[3]{-2}}\\~\\ y= 7x+\frac{4}{\sqrt[3]{2}}\\~\\ y= 7x+\frac{4}{2^{1/3}}\times \frac{2^{2/3}}{2^{2/3}}\\~\\ y= 7x+ \frac{4\times 2^{2/3}}{2}\\~\\ y= 7x+ \frac{2\times 2^{2/3}}{1}\\~\\ y= 7x+ \sqrt[3]{32}\\~\\ \)

Melody  Dec 10, 2015
 #1
avatar+93654 
0

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

 

I assume you want me to rationalize the denominator  ://

 

 

\(y= (7x)-\frac{4}{\sqrt[3]{-2}} \\~\\ y= 7x+\frac{4}{\sqrt[3]{2}} \\~\\ y= \frac{7x\sqrt[3]{2}+4}{\sqrt[3]{2}} \\~\\ y= \frac{7x*2^{1/3}+4}{2^{1/3}} \\~\\ y= \frac{2^{2/3}}{2^{2/3}}\times \frac{7x*2^{1/3}+4}{2^{1/3}} \\~\\ y= \frac{7x*2+4*2^{2/3}}{2} \\~\\ y= \frac{7x+2*2^{2/3}}{1} \\~\\ y= 7x+2^{5/3} \\~\\ y= 7x+\sqrt[3]{32} \\~\\ \)

Melody  Dec 10, 2015
 #2
avatar+93654 
+10
Best Answer

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

 

I did that the super long way ..

 

\(y= 7x-\frac{4}{\sqrt[3]{-2}}\\~\\ y= 7x+\frac{4}{\sqrt[3]{2}}\\~\\ y= 7x+\frac{4}{2^{1/3}}\times \frac{2^{2/3}}{2^{2/3}}\\~\\ y= 7x+ \frac{4\times 2^{2/3}}{2}\\~\\ y= 7x+ \frac{2\times 2^{2/3}}{1}\\~\\ y= 7x+ \sqrt[3]{32}\\~\\ \)

Melody  Dec 10, 2015

18 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.