+0  
 
+5
348
2
avatar+10 

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

Pittassuaq  Dec 10, 2015

Best Answer 

 #2
avatar+90988 
+10

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

 

I did that the super long way ..

 

\(y= 7x-\frac{4}{\sqrt[3]{-2}}\\~\\ y= 7x+\frac{4}{\sqrt[3]{2}}\\~\\ y= 7x+\frac{4}{2^{1/3}}\times \frac{2^{2/3}}{2^{2/3}}\\~\\ y= 7x+ \frac{4\times 2^{2/3}}{2}\\~\\ y= 7x+ \frac{2\times 2^{2/3}}{1}\\~\\ y= 7x+ \sqrt[3]{32}\\~\\ \)

Melody  Dec 10, 2015
Sort: 

2+0 Answers

 #1
avatar+90988 
0

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

 

I assume you want me to rationalize the denominator  ://

 

 

\(y= (7x)-\frac{4}{\sqrt[3]{-2}} \\~\\ y= 7x+\frac{4}{\sqrt[3]{2}} \\~\\ y= \frac{7x\sqrt[3]{2}+4}{\sqrt[3]{2}} \\~\\ y= \frac{7x*2^{1/3}+4}{2^{1/3}} \\~\\ y= \frac{2^{2/3}}{2^{2/3}}\times \frac{7x*2^{1/3}+4}{2^{1/3}} \\~\\ y= \frac{7x*2+4*2^{2/3}}{2} \\~\\ y= \frac{7x+2*2^{2/3}}{1} \\~\\ y= 7x+2^{5/3} \\~\\ y= 7x+\sqrt[3]{32} \\~\\ \)

Melody  Dec 10, 2015
 #2
avatar+90988 
+10
Best Answer

y= (7x)-4/(sqrt3(-2) = 7*x-((4/sqrt3(-2)))

 

I did that the super long way ..

 

\(y= 7x-\frac{4}{\sqrt[3]{-2}}\\~\\ y= 7x+\frac{4}{\sqrt[3]{2}}\\~\\ y= 7x+\frac{4}{2^{1/3}}\times \frac{2^{2/3}}{2^{2/3}}\\~\\ y= 7x+ \frac{4\times 2^{2/3}}{2}\\~\\ y= 7x+ \frac{2\times 2^{2/3}}{1}\\~\\ y= 7x+ \sqrt[3]{32}\\~\\ \)

Melody  Dec 10, 2015

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details