+0  
 
0
109
2
avatar+578 

\(y=x^2+8x+18\)

whats the vertex, focus and directrix

OfficialBubbleTanks  Mar 12, 2018
 #1
avatar+12560 
+1

In vertex form:

y = x^2 +8x  +16     -16 +18     ('completing the square)

y = (x+4)^2 +2            Vertex  h, k   = -4,2    Upward opening parabola (coefficient of (x+4)^2 is positive: +1  )

 

Re-arranging

 

y-2 = 4p (x+4)^2          4p = 1   p= 1/4   distance from vertex to directrix and focus

 

Directrix =   y= 2- 1/4 = 1.75

Focus = y= 2+1/4 = 2 1/4       x = -4        so   -4, 2 1/4

 

Graph:

ElectricPavlov  Mar 12, 2018
 #2
avatar+87301 
+1

y = x^2 + 8x + 18       complete the square on x

 

y = x^2 + 8x + 16 + 18 - 16

 

y = (x + 4)^2 + 2

 

(y - 2) = (x + 4)^2    (1)

 

In the form 

 

4p (y - 2)  = ( x + 4)^2   .....it's clear from (1) that  p =1/4

 

This parbola turns upward

 

The vertex  is (-4, 2)

 

The  focus is given by :    ( -4 , 2+ p)  ⇒  (-4 , 2 + 1/4) ⇒ ( -4, 9/2)

 

The directrix is given by :

y   =  ( 2 - 1/4)  =  7/4

 

 

cool cool cool

CPhill  Mar 12, 2018

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.