+0  
 
0
72
2
avatar+555 

\(y=x^2+8x+18\)

whats the vertex, focus and directrix

OfficialBubbleTanks  Mar 12, 2018
Sort: 

2+0 Answers

 #1
avatar+12266 
+1

In vertex form:

y = x^2 +8x  +16     -16 +18     ('completing the square)

y = (x+4)^2 +2            Vertex  h, k   = -4,2    Upward opening parabola (coefficient of (x+4)^2 is positive: +1  )

 

Re-arranging

 

y-2 = 4p (x+4)^2          4p = 1   p= 1/4   distance from vertex to directrix and focus

 

Directrix =   y= 2- 1/4 = 1.75

Focus = y= 2+1/4 = 2 1/4       x = -4        so   -4, 2 1/4

 

Graph:

ElectricPavlov  Mar 12, 2018
 #2
avatar+86528 
+1

y = x^2 + 8x + 18       complete the square on x

 

y = x^2 + 8x + 16 + 18 - 16

 

y = (x + 4)^2 + 2

 

(y - 2) = (x + 4)^2    (1)

 

In the form 

 

4p (y - 2)  = ( x + 4)^2   .....it's clear from (1) that  p =1/4

 

This parbola turns upward

 

The vertex  is (-4, 2)

 

The  focus is given by :    ( -4 , 2+ p)  ⇒  (-4 , 2 + 1/4) ⇒ ( -4, 9/2)

 

The directrix is given by :

y   =  ( 2 - 1/4)  =  7/4

 

 

cool cool cool

CPhill  Mar 12, 2018

21 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy