+0  
 
0
175
2
avatar+4 

If u could help me!! I'm a very slow student 

 

Full question: 

 

Yolanda throws a sphere up in the air from the top of a building. After tt seconds, the height of the sphere above the ground is hh feet, where h=−16t2+30t+78.h=−16t2+30t+78. After how many seconds does the sphere hit the ground?

beebee1  Jan 3, 2018
edited by beebee1  Jan 3, 2018

Best Answer 

 #2
avatar+6945 
+1

After  t  seconds, the height of the sphere above the ground is  h  feet, where

 

h  =  -16t2 + 30t + 78

 

After how many seconds does the sphere hit the ground?

 

When the sphere is on the ground, its height is zero. We want to know the time when the height of the sphere is zero. That is, we want to know  t  when  h = 0 . We want to know the value of  t  that makes this equation true:

 

0  =  -16t2 + 30t + 78

                                          To solve for  t , let's first divide both sides of the equation by  2 .

0  =  -8t2 + 15t + 39

                                          Now let's solve this quadratic equation using the quadratic formula.

t  =  \({-15 \pm \sqrt{15^2-4(-8)(39)} \over 2(-8)}\)

 

t   =   \({-15 \pm \sqrt{225+1248} \over -16}\)

 

t   =   \({-15 \pm \sqrt{1473} \over -16}\)

 

t   =   \({-15 + \sqrt{1473} \over -16}\)          or          t  =  \({-15 - \sqrt{1473} \over -16}\)

 

t  ≈  -1.461                    or          t  ≈  3.336

 

Since  t  is a measure of time, it should be the positive option.

 

So...the sphere hits the ground after about  3.336  seconds.

hectictar  Jan 3, 2018
Sort: 

2+0 Answers

 #1
avatar+502 
+1

Just confirming before answer, is this what the question lloks like 

Yolanda throws a sphere up in the air from the top of a building. After t2 seconds, the height of the sphere above the ground is h2 feet, where h=−16t2+30t+78. After how many seconds does the sphere hit the ground?

Rauhan  Jan 3, 2018
 #2
avatar+6945 
+1
Best Answer

After  t  seconds, the height of the sphere above the ground is  h  feet, where

 

h  =  -16t2 + 30t + 78

 

After how many seconds does the sphere hit the ground?

 

When the sphere is on the ground, its height is zero. We want to know the time when the height of the sphere is zero. That is, we want to know  t  when  h = 0 . We want to know the value of  t  that makes this equation true:

 

0  =  -16t2 + 30t + 78

                                          To solve for  t , let's first divide both sides of the equation by  2 .

0  =  -8t2 + 15t + 39

                                          Now let's solve this quadratic equation using the quadratic formula.

t  =  \({-15 \pm \sqrt{15^2-4(-8)(39)} \over 2(-8)}\)

 

t   =   \({-15 \pm \sqrt{225+1248} \over -16}\)

 

t   =   \({-15 \pm \sqrt{1473} \over -16}\)

 

t   =   \({-15 + \sqrt{1473} \over -16}\)          or          t  =  \({-15 - \sqrt{1473} \over -16}\)

 

t  ≈  -1.461                    or          t  ≈  3.336

 

Since  t  is a measure of time, it should be the positive option.

 

So...the sphere hits the ground after about  3.336  seconds.

hectictar  Jan 3, 2018

12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details